
The authors note that references 22 through 39 appeared incorrectly in the published references list. Below are the corrected references 22 through 39.

Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

Joseph P. Torella, Christopher J. Gagliardi, Janice S. Chen, D. Kwabena Bediako, Brendan Colón, Jeffery C. Way, Pamela A. Silver, and Daniel G. Nocera

*Department of Systems Biology, Harvard Medical School, Boston, MA 02115; †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; and ‡Wyss institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115

Contributed by Daniel G. Nocera, December 30, 2014 (sent for review December 8, 2014)

Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2 along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

Photovoltaics (PV) provide a scalable and cost-effective method for converting solar energy into electricity but do so only intermittently as a result of daily variations in solar intensity and the diurnal solar cycle (1–3). PV-based fuel generation can be used to bridge the gap between peak solar power and utility load curves (2, 4, 5), the simplest example of which is PV-driven water splitting to generate hydrogen as a fuel. A current lack of distribution and storage infrastructure for H2, however, has led to slow technology adoption and thus H2 is not yet widely used directly as a transportation fuel or for electricity generation via fuel cells (6, 7). Liquid fuels are more appealing as a solar storage medium because of their attractive energy density and existing sophisticated distribution and storage infrastructures (2). However, attempts to produce liquid fuel directly via CO2 reduction have poor specificity and energy efficiency (8, 9) with exceptions only recently emerging (10–13).

An alternative approach to the direct reduction of CO2 to liquid solar fuels is to engineer fuel production in organisms that naturally use light energy to fix CO2 to biomass (14–16). Notwithstanding, photosynthetic organisms suffer inefficiencies arising from nonidealt light-harvesting properties that are not likely to be addressed in the near term (17). As a result, the observed solar-to-biomass efficiency by plants typically approach only 1% of the thermodynamic maximum annually (18, 19) or between 1.4% and 2.0% over the growing season when calculated on the basis of total solar radiation (17).

In principle, the unique advantages of PVs and photosynthetic carbon fixation may be coupled to achieve higher solar-to-fuel efficiency (SFE), and several proof-of-principle demonstrations of this kind of coupling have been made. Electrolysis of biological culture media has been used to drive O2 generation at the anode and, in most reports, H2 or formate generation at the cathode (20–22). Hydrogen-oxidizing autotrophs grow on the evolved hydrogen or formate, producing biomass and, in one case, fusel alcohols (22). In other cases, the cathode may be used to deliver reducing equivalents directly to a target autotroph (23, 24) or indirectly via a soluble mediator such as Fe3+ or NO2−, which serves as the electron donor to the autotrophic microbe of interest (25, 26). In all cases, coupling these systems to a PV may enable solar-to-biomass and solar-to-fuel production (2, 27, 28).

These early demonstrations of electricity-driven carbon fixation have highlighted significant impediments to the design of scalable and high SFE systems. Some promising bioelectrosynthetic systems rely on obligate anaerobic bacteria that must be kept separate from the oxygen-generating anode, making them difficult to incorporate into such an integrated system (24). For systems incorporating aerobic bacteria, a prominent impediment is the ability to implement the oxygen evolution reaction (OER) efficiently in the pH-neutral environment commonly required for biological growth. To operate in water, precious metal catalysts such as platinum or iridium have been used to drive the OER. Aside from the inherent limitations imposed by the criticality of such metals (29), these metals are inferior catalysts for water splitting under biologically amenable conditions. Although the minimal thermodynamic potential required for water splitting is 1.23 V (30), previous studies have operated at total cell potentials of 4.0–5.5 V (20–22) to drive biological growth, wasting 70–80% of input energy. This inefficiency is in part due to the high overpotentials required by these metal catalysts in driving the OER.

Bioelectrochemistry | isopropanol | biofuel | renewable energy | Ralstonia eutropha

Significance

Renewable-fuels generation has emphasized water splitting to produce hydrogen and oxygen. For accelerated technology adoption, bridging hydrogen to liquid fuels is critical to the translation of solar-driven water splitting to current energy infrastructures. One approach to establishing this connection is to use the hydrogen from water splitting to reduce carbon dioxide to generate liquid fuels via a biocatalyst. We describe the integration of water-splitting catalysts comprised of earth-abundant components to wild-type and engineered Ralstonia eutropha to generate biomass and isopropanol alcohol, respectively. We establish the parameters for bacterial growth conditions at low overpotentials and consequently achieve overall efficiencies that are comparable to or exceed natural systems.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1P.T. and C.J.G. contributed equally to this work.

2To whom correspondence should be addressed. Email: dncera@fas.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424872112/-/DCSupplemental.

PNAS | February 24, 2015 | vol. 112 | no. 8 | 2337–2342

www.pnas.org/cgi/doi/10.1073/pnas.1424872112
The ability to perform OER at low overpotential in neutral pH ranges (pH 6–8) has been achieved with the development of a cobalt phosphate (CoP) catalyst (31). This OER catalyst features many of the properties of the oxygen-evolving catalyst of photosystem II (PSII) including its structure (32–34) and its ability to self-assemble (35, 36), repair itself (37), and manage the proton-coupled electron transfer chemistry of water splitting akin to the Kok cycle of PSII (38). Of pertinence to this study, the catalyst can perform OER in natural waters of a wide variety of solution environments including buffers capable of supporting biological growth (39). When the CoP, OER catalyst is coupled to a hydrogen evolution reaction (HER) catalyst (40), the evolved hydrogen is available for combination with CO₂, providing a foundation for the development of new biological, H₂-based CO₂ reduction strategies to produce liquid and solid fuels.

In this work, a fully integrated microbial-inorganic system has been engineered based on the CoP water-splitting anode, with NiMoZn or stainless-steel (SS) 304 mesh 60 cathodes to generate O₂ and H₂ (41), which has in turn been used to fix carbon to biomass in wild-type (wt) Ralstonia eutropha H16 and to isopropanol in an engineered strain of R. eutropha, Re2133-pEG12. For the former, a maximal bioelectrochemical efficiency of 17.8% is achieved for biomass, and for the latter, a maximal bioelectrochemical efficiency of 3.9% is achieved for isopropanol. This bioelectrochemical isopropanol fuel yield (216 mg/L) is the highest yet reported. These high efficiencies are a result of the ability to perform water splitting at lower cell voltages owing to the more efficient OER and HER catalysis. On this point, the higher voltage needed for previous bioelectrochemical cells has been identified to originate from the inability to support water splitting vs. reactive oxygen species (ROS) generation at lower potentials. When water splitting is not prevalent, current is redirected to drive parasitic reactive side reactions that generate ROS, which leads to cell death. This work lays a foundation for realizing liquid fuel production based on solar water splitting and provides an important and general proof-of-principle demonstration that inorganic and biological materials can be interfaced to achieve solar-to-fuels storage schemes that are not realized by either system in isolation. Moreover, it shows that integrated inorganic-biological hybrid systems may offer yields beyond those available to photosynthetic organisms for the production of fuels.

Results
Bioelectrochemical Growth of R. eutropha H16 Driven by Earth-Abundant Water-Splitting Catalysts. A schematic of the system and the cell configuration used for the bioelectrochemical experiments is shown in Fig. 1. R. eutropha was cultured in the cell using a CoP anode and either NiMoZn electrodedeposited on SS 304 mesh or plain SS mesh as a cathode. These electrodes furnished oxygen and hydrogen, respectively, which was the sole source of biological reducing equivalents. The electrolyte was a chloride-free minimal growth medium buffered at pH 7.0 with 36 mM phosphate (Materials and Methods), and the solution was saturated with gaseous CO₂. The cell voltage, \(E_{\text{cell}} \), was operated in the range of 1.8–3.0 V, with current densities ranging between 0.5 and 11 mA/cm².

The potential \(E_{\text{cell}} \) required for water-splitting current in excess of 2 mA/cm² was between 2.0 and 2.3 V (SI Appendix, Fig. S1), which is higher than the potentials needed for the CoP | NiMoZn system in buffer solutions for two reasons. First, the solution resistivity of the growth medium was measured to be significantly higher (\(\Omega_{\text{soln}} = 62.4 \) Ω) than normal water-splitting conditions owing to a relatively low overall salt concentration; the solution resistance translates to a solution voltage of ∼0.5 V at 4 mA/cm² of current. Second, in the presence of the growth medium, the OER (\(\eta_{\text{OER}} \)) and HER (\(\eta_{\text{HER}} \)) overpotentials are higher than in buffered solutions. The \(\eta_{\text{OER}} \) was determined from the Tafel plot for CoP, in the growth media (SI Appendix, Fig. S2) to be \(\eta_{\text{OER}} = 0.56 \text{ V vs. NADPH} \) and \(\eta_{\text{HER}} = 0.53 \text{ V at } 4 \text{ mA/cm²} \) in 0.1 M KPO₄, (pH 7.0) for typical water-splitting conditions. The foregoing measured values and thermodynamic values for OER and HER of \(E_{\text{OER}} = 0.815 \) and \(E_{\text{HER}} = -0.413 \text{ V vs. NHE} \), respectively, at pH 7, the \(\eta_{\text{HER}} \) may be determined from the following:

\[
\eta_{\text{HER}} = E_{\text{cell}} - \left(E_{\text{OER}} + \eta_{\text{OER}} + \Omega_{\text{soln}} + E_{\text{HER}} \right).
\]

The relative contributions of the CoP anode, NiMoZn cathode, and solution resistivity to the overall cell potential, \(E_{\text{cell}} = 2.5 \text{ V} \), operating at a current density of 4 mA/cm² is schematically summarized in Fig. 1B.

We observed consistent growth of R. eutropha for \(E_{\text{cell}} \geq 2.7 \text{ V} \) (Fig. 2A and B). Growth at 2.3 V is achievable after an extended lag phase, and occasionally a long lag phase is observed even at higher voltages (data not included in Fig. 2A). We note that CoP | NiMoZn electrodes and R. eutropha were reciprocally compatible under applied potentials: CoP and NiMoZn electrodes permitted biological growth, and conversely, biological growth did not oppose long-term catalyst function. Neither the range of salts contained in R. eutropha minimal medium nor the presence of biological material greatly altered electrode performance, as cell current was relatively stable (SI Appendix, Fig. S3) and declined by <50% over 14 d.

Cathode-Derived ROS in Bioelectrochemical Reactors. We sought to understand the loss of cell viability at \(E_{\text{cell}} < 2.7 \text{ V} \) by examining
cell cultures in a three-compartment H cell. As established by the spot assays from its cathodic and anodic chambers (Fig. 3A), toxicity occurred exclusively at the cathode for cell potentials poised at a significant water-splitting underpotential (1.8–2.1 V). Moreover, for electrolysis carried out in the single-cell configuration of Fig. 1A, toxicity is significantly reduced by sparging the cell culture with CO\(_2\) to eliminate excess oxygen (Fig. 3B). We also confirmed the production of ROS at water-splitting underpotentials. Specifically, as shown in Fig. 4A, H\(_2\)O\(_2\) is detected in the cathode compartment of an H cell but not in the anode compartment. In a single-cell configuration, H\(_2\)O\(_2\) production rate increases monotonically with decreasing potential and is an order of magnitude greater at 2.1 V than at 2.6 V (SI Appendix, Fig. S4).

The electrolysis experiment was repeated while supplementing the cathodic compartment with 400 \(\mu\)g/mL of an H\(_2\)O\(_2\)-decomposing enzyme, bovine liver catalase. As shown in Fig. 4A, the addition of catalase decreased H\(_2\)O\(_2\) to undetectable levels. An identical experiment using heat-inactivated bovine liver catalase had little effect on the H\(_2\)O\(_2\) concentration. Parallel to these concentration measurements, cell viability was measured. As shown in Fig. 4B, catalase addition was sufficient to rescue cell viability at this low \(E_{\text{cell}}\); however, this effect was attenuated for the addition of heat-inactivated catalase. These experiments together establish that enzymatically competent catalase was capable of restoring full cell viability, and furthermore establish a direct link between H\(_2\)O\(_2\) availability and cell death, suggesting that cathodically generated H\(_2\)O\(_2\) is a major cause of toxicity at low \(E_{\text{cell}}\).

While performing these experiments, we observed low levels of toxicity originating from the NiMoZn cathode in the absence of an applied potential (SI Appendix, Fig. S5). We believe this is due to the ability of this electrode to generate ROS species at open circuit, likely due to the chemical oxidation of the metals by oxygen to produce H\(_2\)O\(_2\). Consistent with this contention, \textit{R. eutropha} cultures subject to the NiMoZn cathode at open circuit potentials and incubated with catalase were noticeably healthier compared with samples without catalase (SI Appendix, Fig. S5). Accordingly, we replaced the cathode with the inert albeit slightly less active HER electrode, a plain SS 304 mesh cathode (6.0 ± 0.2 mA/cm\(^2\) for NiMoZn vs. 2.6 ± 0.2 mA/cm\(^2\) for SS at 2.7 V). The cell growth for SS is similar to that of NiMoZn (SI Appendix, Fig. S6), but it exhibits slightly better behavior (slower cell growth, shorter average lag phase duration, and less variable growth kinetics) as a result of reduced ROS generation. Similar biomass production could also be obtained with the SS cathode despite its lower HER performance. The SS cathode was therefore used for subsequent experiments.

Bioelectrochemical Production of Fusel Alcohols by Genetically Engineered \textit{R. eutropha}. Wild-type \textit{R. eutropha} H16 was replaced with \textit{Re2133-pEG12} in the bioelectrochemical cell shown in Fig. 1. The strain, engineered by Grousseau et al. (42), produces isopropanol at high yield under fructose-fed, nutrient-limited conditions. As summarized in Fig. 5A, whereas wt \textit{R. eutropha} rapidly converts acetyl-coenzyme A (acytetyl-CoA) to the storage polymer polyhydroxybutyrate (PHB) under nutrient-limited growth conditions (43), \textit{Re2133-pEG12} is disrupted in PHB synthesis and expresses four genes that redirect acetyl-CoA toward the synthesis of isopropanol. Plasmid pEG12 constitutively expresses genes for a ketothiolase (\textit{phaA}) and acetoacetate-CoA transferase (\textit{ctf}) from \textit{R. eutropha}, and an acetoacetyl decarboxylase (\textit{ade}) and alcohol dehydrogenase (\textit{adh}) from \textit{Clostridium} in red. Both the native \textit{phaA} and a plasmid-encoded copy of \textit{phaA} (\textit{phaA}*) are expressed in this strain, which has also been shown to produce the side products pyruvate and acetone.

\textit{Re2133-pEG12} grew robustly in our electrochemical setup and, over the course of 5 d, produced 216 ± 17 mg/L isopropanol (Fig. 5B), which is the highest yield of fuel reported for a bioelectrochemical system (22). Isopropanol production was highly selective (~90% yield), as only small quantities of acetone (10 ± 1 mg/L) and pyruvate (17 ± 7 mg/L) were detected in the medium after 120 h. Minimal medium was amended with 0.05% ammonium sulfate to limit cell growth to ~0.8 g/L (42) [optical density (OD) ~ 2.0], consistent with the final OD of ~2.5 for the cultures. Cessation of growth due to nitrogen depletion was followed by a rapid increase in isopropanol production. This
decoupling of growth and product synthesis is consistent with the previously reported behavior of this strain under fructose-fed conditions (42) and with pyruvate synthesis kinetics in other PHB⁺ strains of *R. eutropha* (44).

Discussion

The CoPi, OER catalyst permits water splitting to be performed in biologically compatible solutions and at operating potentials significantly lower than those used in previous bioelectrochemical studies. Specifically, we have shown that the potential used to support biological growth can be decreased by >1.3 V and that platinum and other rare earth metal electrodes are dispensable.

The ability to achieve bacterial growth at lower potentials has revealed a quizzical dependence of biological viability on cell potential at both high (\(E_{\text{cell}} \geq 4.0 \text{ V}\)) and low (\(E_{\text{cell}} \leq 2.3 \text{ V}\)) potentials. The loss of cell viability at high potentials has been ascribed logically to the production of ROS via water oxidation at the anode, where oxygen is normally produced in the water-splitting reaction (20, 22). Additionally, it is worth noting that anodic oxidation of chloride at cell potentials of 1.36 V generates highly toxic hypochlorite. Although this has long been recognized (20, 21), it is likely to contribute to toxicity in recent studies where chloride has been included in the medium. To minimize these deleterious anodic reactions on cultures, various methods have been pursued including multichamber cell designs, and anodic shielding to limit toxicity of electrogenerated species (22). However, we show here that a distinct mechanism operates at low potentials, where ROS, and specifically \(H_2O_2\), are produced via oxygen reduction at the cathode, rather than by water oxidation at the anode. The latter mechanism imposes a limit on cell potential and is therefore the more serious challenge in building high-efficiency bioelectrochemical systems.

The origin of ROS toxicity at the cathode may be understood by considering the redox potentials shown in Fig. 6. At \(pH 7\), the production of superoxide \((O_2^{-})\), hydrogen peroxide \((H_2O_2)\), and hydroxyl radical \((HO\cdot)\) are all thermodynamically favored compared with the HER couple and thus will be generated at any potential high enough to drive proton reduction (45). Although we identified a role for \(H_2O_2\) in cellular toxicity, superoxide and hydroxyl radicals may play a role as well. Due to their favorable thermodynamics, ROS production rates will be favored over \(H_2\) production at underpotentials to the water-splitting reaction. More generally, lower potentials will increase the faradic efficiency of ROS production at the expense of \(H_2\) production (SI Appendix, Fig. S4). The onset potential of cell growth will be the potential at which \(H_2\) production, which supports cell growth, is sufficient to outweigh the toxic effects of ROS production. In our case, the observed onset potential for cell growth is 2.3 V > \(E_{\text{cell}} \geq 2.7 \text{ V}\).

Within the context of Eq. 1, the use of noble metal electrodes in \(pH 7\) cell medium results in a high \(\eta_{\text{OER}}\) and hence higher potentials may be required to achieve water splitting and circumvent ROS production. In the cell shown in Fig. 1, the substantial decrease in \(\eta_{\text{OER}}\) by CoPi allows for a significantly lower \(E_{\text{cell}}\) potential to be achieved. Indeed, in the cell configuration shown in Fig. 1, the \(\eta_{\text{HER}}\) and \(\Omega_{\text{cell}}\) are larger contributors to \(E_{\text{cell}}\) than \(\eta_{\text{OER}}\).

The lower \(E_{\text{cell}}\) for the CoPi | NiMoZn or SS water-splitting system is manifested in higher overall solar-to-fuels efficiencies. For an integrated bioelectrochemical setup that uses solar energy to drive water splitting, followed by biological utilization of the evolved \(H_2\) to produce biomass or isopropanol fuel, the output biomass \((B)\) in milligrams dry cell weight (mgDCW) or isopropanol \((I_P)\) in milligrams is given by the following:

\[
B = W \times (52 \text{ mgDCW/kJ}) \times \eta_{\text{bio}} \times \eta_{\text{H_2}} \times \eta_{\text{bio}}.
\]

\[
I_P = W \times (31 \text{ mg/kJ}) \times \eta_{\text{J_2}} \times \eta_{\text{H_2}} \times \eta_{\text{bio}}.
\]

where \(W\) is the total energy input in kilojoules, \(\eta_{\text{J_2}} = 1.23 \text{ V/}\text{E}_{\text{cell}}\) \(\eta_{\text{H_2}}\) represents the faradaic efficiency for \(H_2\) production, \(\eta_{\text{bio}}\) represents the efficiency of biomass production from \(H_2\), and the
maximum thermodynamic yields of biomass and isopropanol from input energy are 52 mgDCW/kJ and 31 mg/kJ, respectively (SI Appendix). The yield of biomass from electricity as a percentage of maximum thermodynamic yield was calculated as the total mass of biomass produced divided by ($W \times 52$ mgDCW/kJ) (Eq. 2); isopropanol yield was calculated in a similar fashion using Eq. 3. We calculated maximal yields of biomass and isopropanol for a single experiment to be 13.0 ± 0.9% (from the 2.7 V CoP | SS experiment in SI Appendix, Fig. S6) and 1.5 ± 0.2% (from Fig. 5), respectively. These were measured over the course of a complete experiment (4–5 d), including periods where growth was stalled due to a lag phase or to saturation. Maximal short-term yields of biomass and isopropanol, calculated over individual 24-h time periods, reached substantially greater levels (17.8 ± 1.2% and 3.9 ± 0.8%, respectively). As shown in SI Appendix, Fig. S7, these yields track the dependence of cell viability on E_{cell} potentials shown in Fig. 2. The biomass yields, shown in SI Appendix, Fig. S7, are significantly greater than those previously achieved in integrated bioelectrochemical systems (SI Appendix, Table S1), and the electricity-to-isopropanol yield is the highest solar-to-fuels yield (>300% as compared to previous studies) yet observed for an integrated bioelectrochemical system (SI Appendix, Table S1). These increased efficiencies are attributable in part to an increase in the n_{OER} term as a result of the ability of the CoP$_x$ catalyst to perform at lower overpotential under bioelectrochemical conditions.

Assuming the electricity for cell growth were provided by an 18% efficient PV, the observed electricity-to-biomass efficiency would translate to a maximum equivalent solar-to-biomass efficiency of 2.3 ± 0.2% in the long term (4–5 d experiment), or 3.2 ± 0.2% in the short term (1 d maximum) and a short-term solar-to-fuel (isopropanol) yield of 0.7 ± 0.1%. These yields are on par with solar-to-biomass conversion efficiencies over a growing season for domestic C3 and C4 crops (2.9–4.3%): when photosynthetically active radiation is accounted for (48.7% of solar light energy available), the overall solar-to-biomass conversion efficiency is 1.4–2.1% (17, 18). Whereas the advantage of the bioelectrochemical and terrestrial crop yields are similar, bioelectrochemical systems such as the one reported here have the advantage that increased efficiencies may be realized with greater facility. Improvements in medium composition and reactor design (to lower Ω_{soh}), catalyst redesign for the HER reaction (to lower η_{HER}), continued biological engineering (to increase η_{bio}), and the steady improvement in solar PV design and efficiency will lead to continued increases in solar-to-fuels efficiency.

Fig. 6. Major ROS reactions at a cathode. The potentials (in V vs. NHE at pH 7.0) for water splitting are shown in the context of additional cell potentials associated with Eq. 1 and relative to the potentials of viable ROS. The additional potential associated with solution resistance is not shown for clarity.

Conclusion

Liquid solar fuel derived from CO$_2$ holds promise as a both a storage mechanism for solar energy, and as a renewable, carbon-neutral, and infrastructure-compatible energy supply (2, 22, 28). Here, we demonstrate that an integrated bioelectrochemical system delivers appreciable electricity-to-biomass and electricity-to-fuel yields using scalable earth-abundant catalysts. Moreover, we have deciphered the need to maintain cell cultures at high cell potentials in previous studies. Whereas high potentials favor the use of cathodic current for HER, low potentials favor cathodic ROS production. At a sufficiently high potential, the ratio of HER to ROS production is high enough to favor biological growth over ROS toxicity. Owing to the relatively high over-potentials associated with the OER of noble metal electrodes in neutral-pH media, high cell potentials have been necessary to support biological growth for these catalysts. In the study reported herein, the potential at which cell growth is inhibited, owing in part to the lower η_{OER} associated with the CoP$_x$ anode, is decreased. To this end, appreciable yields of biomass production from electricity (17.8% of thermodynamic maximum over 24 h in our highest-yielding experiment) were achieved. These results, in combination with engineered R. eutropha, have allowed us to create a fully integrated bioelectrochemical system for the production of isopropanol, a fusel alcohol compatible with current fuel infrastructure (46, 47), at up to 3.9% yield from electricity. Importantly, assuming a standard 18% PV were used to power our bioelectrochemical system, the maximal solar yields of biomass and isopropanol achieved (up to 3.2% and 0.7%, respectively) are commensurate with or greater than high-yielding domestic crops (17, 19). We note that the CoP$_x$ OER catalyst may be coupled to a ternary metal alloy NiMoZn HER catalyst via a triple-junction amorphous silicon solar cell (40), to achieve direct solar-to-fuels conversion in a wireless “artificial leaf” format (30). In principle, adaptation of our bioelectrochemical system to such energy conversion constructs may provide a sustainable scheme for the conversion of sunlight, water, and CO$_2$ to liquid fuels.

Materials and Methods

Full details of all general methods, general reagents, and the preparation of materials and electrochemical cells used in this study are provided in SI Appendix.

Materials. R. eutropha H16 (wt) and Re2133-pEG12 were obtained from the Sinseky Laboratory at Massachusetts Institute of Technology. The latter is described by Grousseau et al. (42). Rich broth and minimal medium were prepared as previously described (21, 22). To grow R. eutropha strains electrochemically, glycerol stocks of the strain of interest were first streaked on rich broth plus Gm10 (plus Kan200 for Re2133-pEG12). Individual colonies were then grown in rich broth to saturation, diluted, and grown in fructose minimal medium to saturation, and then diluted and grown in carbon-free minimal medium under a hydrogen-containing atmosphere to an OD between 1 and 2. Cultures were then diluted to an OD between 0.17 and 0.22 in minimal medium before addition to the electrochemical cell. Full details of biological culture are provided in SI Appendix.

Catalyst depositions were conducted in 18-M2i water using a CH Instrument model 760D potentiostat. The NiMoZn cathode fabricated by electropodposing onto a substrate of either plainer SS, 304 SS mesh, or nickel mesh using a previously reported procedure (40). The CoP$_x$ catalyst was deposited by bulk electrolysis (35) in a two-compartment electrochemical cell with a glass frit junction of fine porosity. Electrolysis was carried out at 0.85 V vs. Ag/AgCl until the desired amount of charge was passed. Typically, 100 mC of charge was passed for a 2-cm2 electrode. Deposition times were typically ~1 h.

Bioelectrochemical Reactors. For H-cell experiments, minimal medium cultures of R. eutropha were added to each of two (anode/cathode) chambers in an H cell separated by a 0.45-μm surfactant-free cellulose acetate (SFCA) filter to prevent exchange of microbes between them. Each chamber was magnetically stirred at 200 rpm and maintained at room temperature. In single-cell
experiments, minimal medium cultures of R. eutropha were added to a sterile 40-μL glass vial fitted with a rubber septum and a glass sparger connected to a CO2 source by a Glass Frit or metal filter. Photosynthetic (minimal medium) and sparged CO2 were sufficient to maintain culture pH in the range of 6.5–7.5. Sterile electrodes were inserted through the rubber septum, a magnetic stir bar (Squid model stir plate from IKA; Staufen, Germany) was used to mix the culture at 250 rpm, and a water bath was used to keep the setup at 30 °C. Up to eight electrochemical cells were controlled simultaneously and potentiostatically using a Gamry Reference 600 potentiostat and ECCh 8 multiplexer. Full details are provided in SI Appendix, SI Materials and Methods.

Assays and Analysis. Spot assays were performed on 100 μL of culture, diluted 1:10 in fresh minimal medium, and vortexed. Four serial 10-fold dilutions were made of this sample, and 2 μL of each dilution spotted on rich broth agar plates and allowed to dry on the bench top. Plates were typically grown for 2 d at 30 °C before imaging.

H2O2 was measured in 96-well plate format using the Amplex Red H2O2 Detection Kit (Sigma-Aldrich), which specifically detects H2O2 via an enzyme assay (SI Appendix, SI Materials and Methods), according to the manufacturers’ instructions. H2O2 was quantified by comparing absorbance at 555 nm to a standard curve generated from H2O2 standards ranging from 0 to 40 μM. See SI Appendix, SI Materials and Methods for full details.

HPLC of culture supernatants was performed on an Agilent HPLC 1200 equipped with an Anapex HPX-87H column and using a 0.00125 M H2SO4 mobile phase. UV and refractive index detection were used to identify and quantify pyruvate, acetate, and isopropanol. See SI Appendix, SI Materials and Methods for full details.

Electrode performance was compared using Tafel analysis conducted using multistep current measurements between 5 mA and 1 μA allowing between 300 and 1,200 s for equilibration between steps. Solution resistance was measured, and resistive voltage contributions were subtracted from the total measured OER overpotential. All Tafel measurements were conducted in a two-compartment electrochemical cell with a glass frit junction of fine porosity. The Tafel slope for CoP2, on S3304 was 75 mV/dec, in good agreement with previously reported values. Additional Tafel analysis was conducted to compare CoP2 performance in growth media and 0.5 M phosphate buffer. Tafel slopes for KP and minimal growth medium were 71 and 79 mV/dec, indicating no significant change in OER performance between solutions.

ACKNOWLEDGMENTS. We thank J. Lu and A. J. Sinkey for plasmids and reagents; J. Lu, T. J. Kempa, D. C. MacKellar, C. R. Cox, and T. J. Ford for helpful discussion; and A. Todd for providing custom software to operate the Gamry potentiostat and multiplexer. This work was supported by Air Force Office of Scientific Research Grant FA9550-09-1-0689 (to D.G.N.), Office of Naval Research Multidisciplinary University Research Initiative Award N00014-11-1-0725 (to P.A.S.), and a National Science Foundation Graduate Research Fellowship (to J.P.T.). We thank TomKat Trust for funding of the First 100 Watts Project.

5. International Energy Agency (2006) World Energy Outlook 2006 (to D.G.N.), Office of Naval Research Multidisciplinary University Research Initiative Award N00014-11-1-0725 (to P.A.S.), and a National Science Foundation Graduate Research Fellowship (to J.P.T.). We thank TomKat Trust for funding of the First 100 Watts Project.