Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygense superfamily

Kathryn M. McCulloch, Emilianne K. McCranie, Jarrod A. Smith, Maruf Sarwar, Jeannette L. Mathieu, Bryan L. Gitschlag, Yu Du, Brian O. Bachmann, and T. M. Iverson

Department of Pharmacology, Vanderbilt University, Nashville, TN 37232; Department of Chemistry, Vanderbilt University, Nashville, TN 37235; and Department of Biochemistry, Vanderbilt University, Nashville, TN 37232

Edited by John T. Groves, Princeton University, Princeton, NJ, and approved July 2, 2015 (received for review January 26, 2015)

Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spiroycyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenses likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenses of everninomicin biosynthesis, the AviO1 oxygense of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenses evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygense activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.

Significance

Bacterial resistance to clinically relevant antibiotics has renewed public interest in identifying therapeutics with new scaffolds for the treatment of such infections. Analogs of orthosomycins could provide one such scaffold. One route to modifying these scaffolds is through rational engineering of the biosynthetic enzymes, requiring characterization of the biosynthetic pathway. A key feature of orthosomycin antibiotics is the orthoester linkage between carbohydrate groups, and our data suggest that a family of oxygenses is likely responsible for orthoester linkage formation.

www.pnas.org/cgi/doi/10.1073/pnas.1500964112

PNAS Early Edition | 1 of 6
Results

Comparative Genomic Analysis of AKG/Fe(II)-Dependent Oxygenases.

Our studies use five orthosomycin biosynthetic gene clusters available in GenBank: ava (avilamycin biosynthesis from Streptomyces marasmius), avi (avilamycin biosynthesis from S. viridochromogenes Tu57) (10), evd (everninomicin biosynthesis from Micromonospora carbonacea var. aurantiaca), and hyg (hygromycin B biosynthesis from S. hygroscopicus). Of these, only the ava and hyg gene clusters include functional annotation. We therefore used comparative genomics to propose functions for the ava, evd, and eve clusters (Fig. S1). Each cluster contains ORFs encoding enzymes expected in oligosaccharide production, including putative glycosyltransferases, aminotransferases, sugar synthases, and sugar dehydrogenases. Of particular interest are 13 ORFs encoding putative AKG/Fe(II)-dependent oxygenases: three in each of the ava, avi, evd, and eve gene clusters and one in the hyg gene cluster. The number of putative oxygenases correlates with how many anticipated oxidative cyclizations are required for orthoester linkage and methylenedioxy bridge formation in each antibiotic. Furthermore, these are the only enzymes within each gene cluster that appear to have sufficient catalytic capacity for such oxidations.

Phylogeny of AKG/Fe(II) Oxygenases of Orthosomycin Biosynthesis.

Phylogenetic analysis of the 13 putative AKG/Fe(II)-dependent oxygenases of avilamycin, everninomicin, and hygromycin B biosynthesis demonstrates that these enzymes form a distinct subgroup that contains the 13 oxygenases studied here as well as several as-yet-uncharacterized close homologs (a subset is included in Fig. S1). This orthosomycin-associated subgroup is most closely related to the phytanoyl-CoA 2-hydroxylase (PhyH) subfamily of AKG/Fe(II) oxygenases (16–19). Our analysis further separates the orthosomycin-associated oxygenases into subgroups (Fig. 1B). The first three subgroups contain one oxygenase from each avilamycin and everninomicin gene cluster, whereas the fourth subgroup contains only HygX. Sequence identity between enzymes of different subgroups is 12–40%, which is consistent with action on distinct substrates. Enzymes belonging to the same subgroup exhibit sequence identities of 70–94%, suggesting that they catalyze the same reaction on either closely related or identical substrates (20). Sequence identities in this range further suggest that an enzyme can represent a subgroup.

Structures of S. viridochromogenes AviO1, M. carbonacea EvdO1 and EvdO2, and S. hygroscopicus HygX Oxygenases. We determined crystal structures for a representative of each phylogenetic subgroup (Fig. 2A, Fig. S2A–C, and Tables S1 and S2). Each enzyme adopts the double stranded β-helix motif with the active site housing a metallocenter between β-sheets containing antiparallel β-strands. Despite conservation of fold, the oligomerization state varies, with AviO1 and EvdO2 monomers, EvdO1 a dimer, and HygX a tetramer. Structural similarity searches support our sequence analysis suggesting that the orthosomycin-associated oxygenases are related to the PhyH subfamily of AKG/Fe(II)-dependent oxygenases (16–19). Of note, the halogenases SyrB2 and CytC3 cluster near the orthosomycin-associated oxygenases (13, 21).

Origins of Substrate Specificity. Loop insertions between β-strands of the double stranded β-helix of AKG/Fe(II)-dependent oxygenases are proposed to control substrate specificity (22) and AviO1, EvdO1, EvdO2, and HygX all contain loop inserts to form large binding clefts (Fig. 2C, Fig. S2 D–E, and Movies S1–S4). Three notable insertions are located at the N- and C-termini and between β-strand IV and β-strand V of the β-helix (Fig. 2B and Fig. S2 D–I), common sites for specificity-inducing insertions. Smaller inserts in the core fold complement these major insertions.

All insertions have high crystallographic temperature factors, a statistic commonly interpreted as a metric of flexibility. Here, it suggests that substrate binding loops may change conformation upon substrate association. Analysis of the multiple copies of EvdO1 and the HygX in the crystallographic asymmetric units further supports flexibility of these inserts. Four dimers (eight protomers) are located in the EvdO1 asymmetric unit, and these have an average rms deviation of 0.21 Å for the two β-sheets of the double stranded β-helix but an rms deviation of 0.36 Å for the three long loop insertions. Two short loop insertions connecting the outermost β-strands of the double stranded β-helix (approximately residues 129–138 and 226–230) are disordered in four copies. Another striking conformational difference is observed by comparing loops of the four protomers of the HygX-AKG costructure (Fig. 2D) to suggest a movement of nearly 20 Å to promote active site closure. Upon hygromycin B binding, the loop adopts the fully closed conformation in all four chains. Conversely, succinate binding results in all four protomers adopting the most open ordered conformation.

Active Site. Our structural studies exploited catalytically inactive Ni²⁺-substituted enzymes to minimize oxidative damage to the enzyme. This strategy has been used with great success in investigations of Fe(II)/AKG-dependent oxygenases, for example, in the histone demethylases (23–25). Other work has demonstrated that metal substitution does not alter the coordination within the error of crystallographic resolution (26). Metal coordination in canonical AKG/Fe(II)-dependent oxygenases involves two histidines and one acidic residue to form a conserved H-X-D/E...H motif known as the facial triad. Whereas AviO1, EvdO1, and EvdO2 retain the facial triad and the Ni²⁺ retains the octahedral coordination geometry typical of iron coordination in the orthosomycin associated AKG/Fe(II)-dependent oxygenases (Fig. S3 A–C), HygX exhibits an unexpected variation (Fig. 2 E and F). We ensured that this variation was not an artifact of
metal substitution by determining the crystal structure of both HygX incorporated with Fe$^{2+}$ and apo-HygX. We observed no significant change in the positions of the coordinating ligands associated with either the change in metal identity or the removal of the metal completely (Fig. 2E and Fig. S4). In this variation, the acidic residue of the H-X-D/E...H motif is substituted with a glycine, and a glutamic acid located four residues before the distal histidine completes the metal coordination sphere with either a long hydrogen bond or via water-mediated interactions to form a novel H-X-G...E-X-H motif. The acidic ligand is absent in the halogenases (13, 21). The likelihood of AviO1, EvdO1, and EvdO2 performing chemical reactions similar to those reactions typically performed by known glycosyltransferases in the gly gene cluster when hygromycin B contains one glycosidic linkage and one orthoester linkage suggests HygX may act as a substrate with two glycosidic linkages. However, the precise substrate and its stereochemistry are unknown. Because the synthesis of a library of possible substrates is impractical, we assessed whether HygX catalyzed the terminal step of hygromycin B biosynthesis. As enzymes have affinity for their products, we measured HygX binding to hygromycin B using tryptophan fluorescence quenching (Fig. 2F), and found 0.05 mM hygromycin B showed a bridging oxygen approaching the metal center (Fig. 2G). The binding is highly specific, with the position stabilized by 10 direct and 5 water-mediated interactions (Fig. S5A) to promote an orientation in which the anomic carbon of the destomeric acid is 5.2 Å from the metal and 39° from the vertical position of an octahedrally coordinated metal.

HygX Interactions with Hygromycin B. The presence of two putative glycosyltransferases in the gly gene cluster when hygromycin B contains one glycosidic linkage and one orthoester linkage suggests HygX may act upon a substrate with two glycosidic linkages. However, the precise substrate and its stereochemistry are unknown. Because the synthesis of a library of possible substrates is impractical, we assessed whether HygX catalyzed the terminal step of hygromycin B biosynthesis. As enzymes have affinity for their products, we measured HygX binding to hygromycin B using tryptophan fluorescence quenching (Fig. 2F). The binding is highly specific, with the position stabilized by 10 direct and 5 water-mediated interactions (Fig. S5A) to promote an orientation in which the anomic carbon of the destomeric acid is 5.2 Å from the metal and 39° from the vertical position of an octahedrally coordinated metal.

Structural comparisons of the HygX–hygromycin B costructure with the EvdO1, EvdO2, and AviO1 structures show that the hygromycin B ligand geometry would result in a steric clash if HygX used a canonical facial triad (Fig. S5). Facial triad modification in HygX both alleviates this steric clash and results in an increased volume of the prime substrate binding pocket. This facial triad is almost invariant across the family; the only known exception is replacement of the acidic residue with a halide in the facial triad. The likelihood of AviO1, EvdO1, and EvdO2 performing chemical reactions similar to that catalyzed by HygX argues against the novel metal interaction.
coordination tuning chemical reactivity toward oxidative ring closure. Instead, modification of the facial triad residues may have arisen solely for substrate accommodation.

Computational Analysis of Disaccharide Interactions with Orthosomycin-Associated Oxygenases. Gene-disruption experiments of oxygenases in *M. carbonacea var. aurantiaca* have not as yet produced detectable accumulation of pathway intermediates that would be genuine substrates of these oxygenases. Furthermore, attempts to obtain substrate analogs via synthesis (everninomicin) or reduction (hygromycin B) were unsuccessful. However, the state of the art in computational methods has proven successful at discovering viable binding poses of known ligands (29, 30). Thus, we used two complementary in silico methods and our AviO1, EvdO1, and EvdO2 structures to explore whether productive binding modes of relevant ligands are plausible. We simplified docking calculations by using disaccharide mimics of products for two reasons. First, the carbohydrate chain lengths of the physiologically relevant substrates are unknown, but each product must contain at least two carbohydrates. Second, longer oligosaccharides have many degrees of conformational freedom that would dramatically increase the required search space for docking, reducing the confidence in the results. In contrast, the relative orientation of two sugars constrained by a rigidifying orthoester linkage removes uncertainty from the calculations.

We benchmarked our calculations by docking a talose-desmotic acid disaccharide into the HygX structure determined without hygromycin B. The top-scoring binding poses reproduced the experimentally determined position with an rms deviation of 0.70 Å for all atoms and 0.34 Å for the five atoms of the trioxaspiro group. We then docked the C/D and G/H rings of avilamycin and everninomicin with AviO1, EvdO1, and EvdO2. In all cases, at least one pose oriented a disaccharide such that one oxygen atom of the orthoester linkage faces the metal center (Fig. S3 E–G). For EvdO1, in particular, the top pose oriented the G/H rings of everninomicin in a manner consistent with methylenedioxy bridge formation (Fig. S3F). In multiple instances, we observed clusters of highly related poses representing between 25–50% of the reported hits that were consistent with either orthoesterification or methylenedioxy bridge formation. These calculations suggest that the active site pockets can accommodate substrates in orientations consistent with orthoester linkage formation.

**Everninomicin Congeners of *M. carbonacea var. aurantiaca*. *M. carbonacea var. africana* produces fourteen previously described everninomicin congeners (31–34). Before genetic manipulation, we assessed which everninomicin congeners are produced by *M. carbonacea var. aurantiaca* because these have not been reported in the literature. We performed liquid chromatography–MS (LC/MS) analysis of crude extracts followed by tandem LC/MS. This analysis identified four congeners, everninomicins D–G, that vary in the oxidation state of the nitrogen group (–NH₂, –NOH, –NO, or –NO₂) decorating the A-ring (Fig. 3A, red, and Fig. S6). The structure of everninomicin E, the amino progenitor to the more oxidized species F and G, was confirmed by high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometric analysis. Fragmentation (MS²) provided unambiguous constitutional analysis for the monosaccharide substituents (Fig. S8 and Fig. S7), and the expected amine oxidation ladder products corresponding to everninomicins F–G were observed. Of note, everninomicins E, F, and G have not been previously reported.

Targeted Gene Disruption in *M. carbonacea var. aurantiaca*. We probed the functions of the *evdO1* and *evdMO1* genes in the production of these congeners by targeted gene disruption. Our approach used modified two-step PCR targeting based on the λ-Red recombination system followed by intergeneric conjugation with *Escherichia coli* to transfer plasmid DNA from donor *E. coli* (35). Genetic manipulation in actinomycetes is not well developed, and lack of sporulation by *M. carbonacea* renders conjugation difficult in this organism (36, 37). Thus, we adapted our conjugation method to transform mycelia. A second complication is *M. carbonacea* sensitivity to nalidixic acid, the counterselection marker commonly used to remove donor *E. coli* following conjugation. Thus, we titered the nalidixic acid to stunt the growth of *E. coli*, affording the slower-growing *M. carbonacea* time and space to grow. We then determined that each disruption resulted from a double crossover event using both PCR analysis and Southern hybridization (Fig. S8 and Table S3).

Discussion

Substrate Identity and Selectivity. Genomic analysis, gene disruption, and structural characterization with ligands can suggest function for natural product biosynthetic enzymes (15, 38, 39), and our data strongly support a role for HygX in catalyzing orthoester linkage formation. Together, these data suggest a fully decorated three-ringed compound lacking the orthoester linkage as the substrate and narrows the possibilities for HygX substrates to two alternative anomers at C1 of the desmotic acid moiety. The lack of readily available potential precursor molecules renders chemical synthesis of either of these anomers enormously challenging.

Reasonable sequence identities between HygX and each of the remaining 12 AKG/Fe(II)-dependent oxygenases in everninomicin and avilamycin biosynthesis suggest roles for the latter enzymes in carbohydrate-associated oxidative ring closures.
Previous experimental assessment of the function of orthosomycin-associated oxygenases is limited to gene disruption of avio1, avio2, and avio3 of avilamycin biosynthesis. Deletion of avio2 (evdo2 homolog) from S. viridochromogenes Tü57 resulted in a new peak in the mass spectrum, interpreted as the loss of the acetyl group on C4 of the H-ring (see Fig. 4A for location) (40). Given that an AKG/Fe(II)-dependent oxygenase is unlikely to catalyze acetylation and that the homologous oxygenase is present in the evd and eve gene clusters despite the absence of an acetyl group on everninomicin congeners, an alternative interpretation of this result is that Avio2 catalyzes a ring closure before acetylation and that this ring closure is required for substrate recognition by an acetylating enzyme. Consistent with this interpretation, our computational studies suggest that the homolog EvdO2 can reasonably orient the G/H rings.

The assignment of function to the remaining enzymes is more tenuous. Deletion of both avio1 (evdMO1 homolog) and avio3 (evdo1 homolog) from S. viridochromogenes Tü57 resulted in loss of detectable avilamycin production (40), mirroring our results of loss of detectable everninomicin production upon the deletion of evdO1 and evdMO1. The lack of any detectable species precludes assignment of precise catalytic function.

Preliminary Reaction Scheme. All characterized AKG/Fe(II)-dependent oxygenases have conserved aspects to their reaction cycle. For example, these powerful oxidants function via two sequential half reactions that require sequential binding of three substrates: AKG, prime substrate, and O2. The first half-reaction converts the cosubstrate AKG to succinate, whereas the second half-reaction converts prime substrate to product. A combination of kinetic, biochemical, and structural studies support a unified mechanism for cosubstrate catalysis that generates the highly re-active Fe(IV)=O oxidizing species (41–44).

Numerous schemes for prime substrate catalysis are observed in the superfamily. The most relevant to orthoester linkage and methylenedioxy bridge formation is oxidative cyclization by clavaminate synthase, where hydrogen atom abstraction from substrate (45) is followed by ring closure. Comparison of hygromycin B in the HygX structure to that of the proclavaminic acid substrate bound to clavaminate synthase (14) aligns an anomic carbon of hygromycin B with the carbon atom of proclavaminic acid that undergoes hydrogen atom abstraction (Fig. 2I). This carbon atom is 5.4 Å from the metal in the clavaminate synthase–proclavaminic acid structure and 5.2 Å in the HygX–hygromycin B structure. The C1 carbon of the hygromycin B precursor is one logical site for hydrogen atom abstraction (Fig. 4A), although alternative positions, such as the hydroxyl group, cannot be excluded (46). Analogous abstraction possibilities exist to initiate methylenedioxy bridge formation (Fig. 4B).

In the context of this reaction scheme, several possible mechanisms could support orthoester linkage and methylenedioxy bridge formation following initial hydrogen atom abstraction. Options include oxidative radical coupling (with or without ligand transfer or oxygen rebound), nucleophile capture of an oxo-carbenium ion, or a ketene acetal intermediate (47). Because P450 enzymes are the only characterized enzymes that catalyze methylenedioxy bridge formation, we examined that mechanism closely. The paucity of P450 enzymes that can act as pure dehydrogenases resulted in a proposal of Fe-centered radical chemistry with an oxygen rebound mechanism followed by water elimination from the hydroxylated intermediate (48). Oxygen rebound leading to hydroxylation and elimination on a C2/C3 methoxy of the H-rings is supported by the AKG/Fe(II)-dependent superfamily scaffold. However, AKG/Fe(II)-dependent enzymes can also catalyze dehydrogenation of a C2/C3 methoxy group without ligand insertion and/or oxygen rebound, which could allow for methylenedioxy formation by quenching an oxonium intermediate. Other possible mechanisms for methylenedioxy formation are possible. For instance, in the event of a C2-deoxy H-ring precursor, C2 oxygenation and sequential oxidative desaturation circumvents the oxonium intermediate.

Potential for Engineering Altered Reactivity into AKG/Fe(II)-Dependent Enzymes. Whereas Ziracin stalled in phase III clinical trials, everninomicin analogs still hold promise for clinical use. Everninomicin synthesis is challenging (49), likely making de novo production of analogs prohibitively expensive, but analogs could be produced by engineering the biosynthetic enzymes in the producing organism. The loss of detectable everninomicin production for the ΔevdO1 and ΔevdMO1 strains indicates that functional oxygenase activity is critical for everninomicin production. Thus, any bioengineering requires that substrate selectivity of the AKG/Fe(II)-dependent oxygenases be modified.

Within the AKG/Fe(II)-dependent superfamily, the halogenases are among the more closely related to the orthosomycin associated oxygenases. Excepting HygX, these are the only enzymes with a modified metal-coordinating facial triad. Interestingly, the ability of the AKG/Fe(II)-dependent halogenase SytB2 to catalyze halogenation or hydroxylation is influenced by subtle changes to either the halide binding site or the substrate (50) and can be tuned to catalyze unnatural reactions, such as nitration of unactivated carbon centers (51). Interestingly, sequence-similarity searches using the 13 enzymes studied here also identify a yet-uncharacterized very close homologs (a subset is listed in Fig. S1), which presents an opportunity to explore further reactions catalyzed by the oxygenase superfamily and investigate the capability of these oxygenases to accept expanded substrates.

Materials and Methods

Protocols for gene cloning, protein overexpression, purification, crystallization, data collection, structure determination and refinement, gene disruption, and mass spectral analysis are available in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Dr. Jeffrey Spraggins of the Vanderbilt Mass Spectrometry Research Center for help with the Fourier transform ion cyclotron resonance mass spectrometric analysis of everninomicin E. This work was supported by National Institutes of Health (NIH) Grant T32 HL007751 (to K.M.M.), the Vanderbilt Summer Science Academy (J.L.M.), the Vanderbilt Institute of Chemical Biology (B.O.B.), Office of Naval Research Grant N00014-09-1-012 (to B.O.B.), and American Heart Association Grant 12GRNT11920011 (to T.M.I.). The Vanderbilt crystallography facility was supported by NIH Grant S10 RR026915. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE Office of Science under Contract DOE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817).

Ikezawa N, et al. (2003) Molecular cloning and characterization of CYP116f1, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Micromonospora carbo-

