Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein

Laura Dominguez1,2, Leigh Foster3, John E. Straub2,4, and D. Thirumalai5

1Department of Chemistry, Boston University, Boston, MA 02215; 2Department of Physical Chemistry, School of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; and 3Department of Chemistry, University of Texas at Austin, Austin, TX 78712

Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved July 6, 2016 (received for review April 22, 2016)

Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer’s disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C99ε3–55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C99ε3–55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C99ε5–55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congeners in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β (Aβ) peptide, on membrane thickness and lipid composition.

Understanding the structural and thermodynamic properties of transmembrane (TM) helical dimers is of fundamental importance to molecular biology. It is known that the association of “bitopic” proteins, having single pass TM helical domains, is essential to immunoreceptors and protein kinases that play critical roles in cellular function. Computational and experimental studies have provided insight into the role of sequence-specific interactions stabilizing helix dimerization (1, 2). Examples include the heptad repeat motif responsible for the stability of coiled-coils in GCN4 phosholamban (3) and the M2 proton channel (4), the role of the GxxG motif in stabilizing TM helix–helix association in systems including the glycoporin A (GpA) homodimer (5, 6), found in the human erythrocyte membrane, and GxxxG and heptad repeat motifs, which play a role in stabilizing homodimers of APP-C99 (C99), the 99-aa C-terminal fragment of the amyloid precursor protein (APP) (7, 8).

The amyloid β (Aβ) peptide aggregation pathway, known to be crucial to the evolution of Alzheimer’s disease (AD), begins with the cleavage of C99 by γ-secretase leading to the formation of a number of isoforms of Aβ. The formation of homodimers of C99 has been proposed to be critical to the mechanism by which C99 is cleaved by γ-secretase, a process that is known to depend on a number of factors including peptide sequence (9–13) and lipid composition of the membrane environment (14, 15). However, recent studies have questioned the role (16) and importance (17, 18) of homodimerization in the processing of full-length C99 by γ-secretase. Regardless of whether C99 homodimer is a natural substrate for γ-secretase, its ready formation both in vitro and in vivo raises the question, what is the functional role of the dimer? Additional knowledge of the structure and stability of the C99 homodimer is therefore essential to our fundamental understanding of principles governing TM helix homodimerization and the molecular basis of AD.

The first simulation of an equilibrium structural ensemble of the homodimer of the TM helical region of C99, C99ε3–55, was performed using replica-exchange molecular dynamics (REMD) simulation and an implicit membrane model (8). We found that the structure of the WT homodimer to be a left-like right-handed coiled-coil structure stabilized by interpeptide Cγ hydrogen bonds, mediated by interactions between GxxG motifs. The results indicated that the GxxG repeat region was significantly less helical than the C-terminal portion of the TM helix. We observed that, of the three contiguous GxxG motifs in the WT peptides, residues Gly53 and Gly56 are most essential in stabilizing the WT dimer through the formation of Cγ hydrogen bonds. The predicted structural ensemble was in good agreement with the proposed solid-state NMR structure (7), while providing more quantitative insights into the structural ensemble of the dimer in a fluid membrane environment.

Contemporaneously, using REMD simulations of C99ε5–55 monomer in an implicit membrane model, we predicted that the TM helix has two helical segments separated by a “hinge” at

Significance

Aggregation of proteins of known sequence is linked to a variety of neurodegenerative disorders. Familial mutations in the amyloid precursor protein (APP), from which the amyloid β (Aβ) protein is excised, are associated with early onset of Alzheimer’s disease. The structures of APP-C99 dimers and the associated stability as well as the monomer–dimer equilibrium are critically influenced by membrane composition. Using a multiscale modeling approach, we have investigated the influence of varying lipid composition on the structure of homodimers of an APP-C99 congener peptide. Besides resolving contradicting experimental results, we demonstrate that membrane lipid composition dramatically influences the relative populations of competing homodimer structures in a way that is linked to the recognition and processing of APP-C99 by γ-secretase.

Author contributions: J.E.S. and D.T. designed research; L.D., L.F., and J.E.S. performed research; L.D., L.F., J.E.S., and D.T. analyzed data; and L.D., L.F., J.E.S., and D.T. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: straub@bu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606482113/-/DCSupplemental.
The different C99$_{3-55}$ dimer interfaces: (Gly-in conformation with right-handed crossing $|_{G}$ Gly-side $|$ Gly-out $|$ is the interhelical distance between $G_{32A}-G_{32B}$, d_{GG} is the dihedral angle formed by $G_{29A}-G_{29B}-G_{32A}-G_{32B}$, where A and B correspond to the two C99$_{3-55}$ monomers. $\psi_{\alpha\beta}$ corresponds to the angle between the vector connecting the axis points of the two helices and the vector connecting the interhelical vector formed by residue Gly$_{29}$.

Fig. 1. (A) C99$_{3-55}$ sequence. Polar residues are colored in green, negatively charged residues are colored in red, and positively charged residues are colored in blue. (B) Structure of lipids used: POPC, DMPC, DOPC. (C) Order parameters for the $\psi_{\alpha\beta}$ structure characterization: d_{GG} is the interhelical distance between $G_{32A}-G_{32B}$, d_{GG} is the dihedral angle formed by $G_{29A}-G_{29B}-G_{32A}-G_{32B}$, where A and B correspond to the two C99$_{3-55}$ monomers. $\psi_{\alpha\beta}$ corresponds to the angle between the vector connecting the axis points of the two helices and the vector connecting the interhelical vector formed by residue Gly$_{29}$.

Gly$_{37}$/Gly$_{38}$ (19). This key prediction was validated in a recent study involving H/D exchange experiments on the C99 peptide complemented with molecular dynamics (MD) simulations of the TM region, C99$_{28-55}$, in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer (20), which also provided detailed insights into the stability of the TM helical region of C99. It was found that the portion of the TM helix on the N-terminal side of the Gly$_{37}$/Gly$_{38}$ hinge was more dynamic and showed enhanced H/D exchange relative to the C-terminal portion of the TM helix (20), a finding in agreement with studies of the C99 monomer in lyso-lysophosphatidylglycerol (LMPG) micelles (21, 22).

Although there is agreement between different experiments and our predictions on well characterized membranes, there is a great deal of controversy regarding the role of lipid composition on APP structures. Two NMR structures of the C99 homodimer congener peptides in a micelle environment have been reported. The proposed structure of GSO-C99$_{15-55}$ in dodecyl-phosphocholine (DPC) is a α-helix left-handed dimer stabilized through interactions involving an extended heptad repeat motif in the Crick-terminal TM helical region. In contrast, the structure of C99$_{28-55}$ homodimer in DPC micelle is a right-handed coiled-coil in agreement with our predictions on well characterized membranes, there is a great deal of controversy regarding the role of lipid composition on APP structures. Two NMR structures of the C99 homodimer congener peptides in a micelle environment have been reported. The proposed structure of GSO-C99$_{15-55}$ in dodecyl-phosphocholine (DPC) is a α-helix left-handed dimer stabilized through interactions involving an extended heptad repeat motif in the Crick-terminal TM helical region. In contrast, the structure of C99$_{28-55}$ homodimer in DPC micelle is a right-handed coiled-coil in agreement with our predictions on well characterized membranes. These studies raise critical questions related to the peptide environment, focusing on how factors such as micelle size and interfacial curvature might influence peptide structures (25, 26).

An NMR study of monomeric C99$_{1-55}$ in membrane environments of variable lipid composition demonstrated that fluctuations in the TM helix can be a strong function of membrane composition (27), suggesting that changes in membrane composition modulate the physical boundaries of the bilayer, including the width and structure of the interface, as well as the chemical nature of the head group region and membrane interior. On the other hand, structures of C99$_{1-55}$ monomer peptide in LMPG micelles and in a series of five zwitterionic bicelle compositions (phosphatidylcholine and sphingomyelin where the acyl chain lengths varied from 14 to 24 carbons) suggest that the helicity of the TM domain of C99 is relatively insensitive to membrane lipid composition (22, 28). These contrasting conclusions for the structures of both the monomers and dimers raise important questions related to the role of environment in modulating C99 monomer structure and C99 homodimer structure and stability.

To resolve the contradicting reports, we have performed detailed simulations of the structure and stability of the monomer and homodimer of the TM domain of C99$_{3-55}$ using a multiscale computational model. Our approach uses atomistic and coarse-grained (CG) representations of the peptide and lipid system self-consistently in a manner that allows for the study of the homodimer structure and its dependence on membrane composition. The multiscale approach we have developed to model TM helical association in lipid bilayers, critical to biomolecular signaling and processing, can provide important insights into the relationship between protein structure and function. By combining the key structural features discovered here, CG simulations when combined with detailed atomic detailed simulations provide a platform for elucidating the energy landscape of membrane peptide systems in general. Remarkably, for the APP dimer quantitatively identical structures are found independent of the membrane composition. However, the extent of heterogeneity of the homodimer ensemble varies and the ground state structure is ultimately selected by the specific membrane environment. Our study provides a detailed picture of the C99$_{23-55}$ structural ensemble, its dependence on membrane composition, and the potential role for changes in structure to influence cleavage of this critical APP by secretases.

Results

Implicit Membrane REMD and CG MD Simulations. The initial conformational distributions were derived from both REMD or CG MD simulations. REMD simulations consisted of 16 replicas spanning temperatures from 300 to 550 K with 10 ns of simulation for each replica (160-ns total simulation time) for each system. We simulated the C99$_{3-55}$ homodimer systems in four different generalized Born model with a simple switching (GBSW) implicit membrane widths: 27, 30, 32, and 35 Å, respectively. Starting configurations sampled a variety of dimer interfaces, with the peptides initially placed 25 Å apart. CG simulations were performed using 60 replicas with 1.5 μs of dynamics for the C99$_{23-55}$ homodimer in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), POPC, and 50:50 POPC/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) bilayers. The two monomers were initially placed at a separation of 50 Å and allowed to associate. As a consequence of the large initial separation, there are no biases in the association of the monomers.

C99$_{23-55}$ Homodimer Populates Multiple Conformational States. Important order parameters used to characterize the homodimer ensemble include the dihedral angle formed by $G_{29G}-G_{32G}-G_{32S}$ (Fig. 1), which differentiates right-handed (negative values) and left-handed (positive values) coiled-coil geometries, and d_{GG} distance, where close distance indicate interpeptide contacts in the GxxG repeat region. Structural ensembles were also projected onto the space of Crick angles, ψ_{Crick}, where ψ_{Crick} of each peptide is defined as the dihedral angle formed by the center of the G_{29} residue, helix vector, and interhelix vector formed by residues G_{37} (Fig. 1). Simulations of the homodimer were analyzed using a projection of the simulated structural ensemble onto the ϕ_{CG} angle and the d_{GG} distance between the

Fig. 2. The different C99$_{3-55}$ dimer interfaces: (Left) A C99$_{3-55}$ Gly-out conformation with a right-handed crossing angle between the helices and GxxG facing the outside of the interface. (Center) A C99$_{23-55}$ Gly-side conformation with a right-handed crossing angle between the helices, showing one monomer GxxG motif facing the interface between the helices and the second monomer GxxG motif facing the outside of the interface. (Right) A C99$_{3-55}$ Gly-in conformation with right-handed crossing angle between the helices and both monomer GxxG motifs facing the inside of the interface between the monomers.
homodimers in bilayers of varying lipid composition as well as the Crick angles, ψCrick (Fig. 3 and Fig. S1).

We identify three states (Figs. 2 and 3) that characterize the homodimer ensemble, where conformations within each state are uniquely identified in terms of one of three different packing interfaces. (i) The most populated state (Gly-in) is stabilized by Gly–Gly interactions in which the residues of the ϕ45 angle repeat face the interior of the homodimer structure with dCG distances of 5 Å and ϕ45 angles of less than −25°. (ii) The next most populated (Gly-side) state is characterized by stabilizing interpeptide interactions involving the hydrophobic residues Leu34 and Met55 that interact to form a zipper-like structure (with glycines facing the side of the homodimer interface). (iii) In the least populated (Gly-out) state, glycine repeats face the outside of the homodimer interface leading to stabilization of the homodimer by hydrophobic interpeptide interactions (residues A42, T43, V39, and V40) with a dCG distance of 12 Å.

Figs. 3 and 4 and Fig. S1 display the probability distributions for the ϕ45 and dCG distances for the C9923–55 homodimer in four different CG and implicit membrane systems, respectively. Although right-handed homodimers are dominant in all membrane compositions, there are notable changes in the relative probability of the three conformational states that compose the homodimer’s conformational ensemble. In particular, in moving from the shortest to longest lipid alkyl chains in saturated DMPC, monounsaturated POPC, and finally to the mixture of POPC and diunsaturated DOPE, there is a dramatic shift in populations of the three homodimer substates. The dominate states in each bilayer vary dramatically from DMPC (32% Gly-out) to POPC (18.0% Gly-in and 16.5% Gly-side) to POPC:DOPE (30% Gly-in). The extent of shift is similar in the implicit membrane systems as the GBSW membrane width is increased (Fig. S2) and for the CG models with fully saturated lipids varying only the length of the alkyl chain (Fig. S1).

Lipid Composition Modulates Competing C9923–55 Homodimer States. Overall, the particular homodimer structure, and the intrinsic disorder in the conformational ensemble, is a strong function of membrane composition. The shift in state populations can be understood in terms of the lipid and solvent density profiles, as well as the lateral pressure profiles, for the three bilayers (Fig. 5). In the thinnest membrane system, DMPC (CG)/27 Å (GBSW), the homodimer has the broadest distribution of ϕ45 angles, and the most substantial populations in the Gly-out substate. As the lipid composition is varied and the membrane width increases, there is a transition to increasingly sharply defined values of ϕ45 angle and enhanced population of the Gly-in substate. In the thickest membrane, POPC:DOPE, there is a relative stabilization of the Gly-in state that is consistent with the earliest predictions of the C9923–55 homodimer structure (8).

As membrane lipid composition is varied from shorter-chained DMPC to longer-chained POPC:DOPE in the all-atom models, and from smaller to wider membranes in the implicit models, a concomitant decrease in the average tilt angle is observed such that the average kink angle is relatively constant (Fig. S2). This suggests that the magnitude of fluctuations in the TM helix about the GG-hinge region, which may play an important role in C99 processing, is an intrinsic characteristic of the TM domain sequence.

All-Atom MD Simulations. To develop a detailed atomistic description of the protein–protein interactions in the most probable CG homodimeric structures, we performed all-atom MD simulations using the CHARMM force field in a variety of lipid membranes and analyzed the resulting structural distributions. The all-atom simulations were used to evaluate the helicity of C9923–55 monomer and dimers in varying membrane lipid compositions (Fig. 6), variations in the solvent-accessible surface area (SASA), and the calculation of pressure–volume (pV) work contributions to dimerization (Fig. 5 and Fig. S3 and associated discussion).

Helicity of TM helix is relatively insensitive to homodimer formation. It appears that fluctuations in the monomeric peptide, particularly near the proposed “kink” region of the TM helix, is associated with slightly reduced helicity in the monomer. In the dimeric conformations, this kink is stabilized by the dimer interactions further reducing the average helicity of C9923–55 in the dimeric

Fig. 3. (Top) Key residues located at the interface of C9923–55 Gly-out, Gly-side, and Gly-in conformations. (Bottom) Conformational distributions of C9923–55 dimers derived from CG MD simulations. Although the overall conformational ensemble is dominated by right-handed coiled-coil conformations for each bilayer, the lipid composition is observed to modulate the relative stability of competing states in the homodimer structural ensemble. The colored scale on the right defines the relative populations.

Fig. 4. Conformational distributions derived from REMD simulations of all-atom peptide in GBSW implicit solvent. The simulations favor right-handed structures at lower dGG values, although structures with larger dGG values also sample left-handed structures. The relative sampling of each state shifts as the membrane width increases, with the 32 Å membrane homodimer structural ensemble strongly dominated by the Gly-in state. The colored scale on the right defines the relative free energy calculated (in kilocalories per mole).
Lipid (solid lines) and water (dashed lines) density profiles. Comparison of helicity derived from (Dominguez et al. monomers (solid in an LMPG − R > work contribution to the C99 2,800 Å − work contribution to the free energy of dimerization differs between Gly-in and Gly-out conformations (Fig. S2, 34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPOPE bilayers. (Fig. S3). The integrated pV work contribution to the formation of homodimers from separated monomer is estimated to be +0.26 kJ/mol (Gly-out) and −2.39 kJ/mol (Gly-in). This suggests that the pV work contribution to the free energy of dimerization differs between Gly-in and Gly-out by 2.65 kJ/mol favoring the formation of the Gly-in substate over the less compact Gly-out state.

Overall, we observe structures consistent with both the Gly-in and Gly-out states, with an overall ensemble that is dominated by right-handed coiled-coil structures. Moreover, the same states structures. The differences observed are minor and consistent with the view that TM domain helicity is only weakly impacted by dimerization.

Enhanced hydrophobic surface stabilizes Gly-out homodimer in thin membrane and bilayer environments. Our results (Fig. S2) suggest that smaller membrane widths favor larger tilt angles of C99 23−55 monomers imposing restraints on the formation of favorable GxxxG interactions between C99 23−55 TM helices. An important difference between the observed Gly-in and Gly-out conformations are the lipophilic and hydrophilic properties of the molecular surface as a response to a hydrophobic mismatch. Gly-out conformations present a larger overall exposed surface area and larger fraction of hydrophobic surface area than Gly-in conformations. It is likely that deeper water penetration (Fig. 5, Top) in the thinner DMPC bilayer and micelle environments stabilizes the Gly-out homodimer structure that presents more absolute hydrophilic surface area than the Gly-in structure.

The calculated SASA values of the C99 23−55 TM helix (from A30 to L52) derived from all-atom simulations of C99 23−55 homodimers in a POPC membrane are ∼ 2,800 Å2 (hydrophobic) and ∼ 325 Å2 (hydrophilic) for Gly-in and ∼ 3,100 Å2 (hydrophobic) and ∼ 430 Å2 (hydrophilic) for Gly-out state. The Gly-out structures show a larger hydrophobic SASA due to higher exposure of bulky hydrophobic amino acids located at the TM-N homodimer interface and exposure of the outward-facing Gly interface created by the GxxxG motif. On the other hand, the Gly-in conformation presents a more elongated structure with smaller volume as a function of the Z coordinate and reduced SASA (smaller hydrophilic and hydrophobic surface area).

pV work favors formation of more compact Gly-in homodimer in POPC bilayer. A key characteristic of the environment of membrane proteins is the lateral pressure profile. The heterogeneity of the surrounding lipid or surfactant environment, with contributions from water, polar, or charged head groups, and lipophilic acyl chains, leads to a nonuniform pressure profile as a function of depth in the bilayer. The characteristics of the pressure profile are known to depend on lipid composition within a given geometry, such as a bilayer, as well as the geometry of the lipid environment, including the curvature at a bilayer, micelle, or vesicle interface. Cantor has explored the influence of lateral pressure profiles on membrane protein structure and function (30–32), including the conductance of ion channels (33) and protein association (34). We analyzed the pressure field surrounding a protein complex encapsulated in a POPC bilayer and assessed the impact of the spatially-dependent pV work on the relative stability of C99 23−55 monomer and homodimer conformations.

The pV work contribution to the free energy of dimerization can be written as follows:

\[w_{pV} = \int_{-\infty}^{\infty} p(z) \Delta A(z) dz, \]

where \(\Delta A = A_D(z) - A_M(z) \) is the relative difference in area of the dimer and two monomers and \(V_D = \int_{-\infty}^{\infty} A_D(z) dz \) and \(V_M = \int_{-\infty}^{\infty} A_M(z) dz \) are the volumes of the dimer and monomers, respectively. With \(p(z) > 0 \) and independent of \(z \), the \(w_{pV} \) would be as follows:

\[w_{pV} = p(V_D - V_M), \]

and \(V_D < V_M \) would result in \(w_{pV} < 0 \) lowering the relative free energy of the dimer compared with the separated monomers and enhancing dimer formation. Similarly, a more compact Gly-in compared with Gly-out homodimer would relatively stabilize the Gly-in substate.

Using a reference frame fixed to a rigid protein and the spatially dependent pressure field from a POPC environment surrounding the protein, we determined the pV work contribution to the C99 23−55 monomer and homodimer conformational equilibrium. We used a reference system consisting of a single component bilayer with pressure profile, \(p(z) \). For the all-atom simulations in a POPC membrane, we estimated the impact of the pV work contributions to the conformational equilibria associated with variations in the protein volume between C99 23−55 monomer and dimers in Gly-in and Gly-out conformations (Fig. S3). The integrated pV work contribution to the formation of homodimers from separated monomer is estimated to be +0.26 kJ/mol (Gly-out) and −2.39 kJ/mol (Gly-in). This suggests that the pV work contribution to the free energy of dimerization differs between Gly-in and Gly-out by 2.65 kJ/mol favoring the formation of the Gly-in substate over the less compact Gly-out state.

Overall, we observe structures consistent with both the Gly-in and Gly-out states, with an overall ensemble that is dominated by right-handed coiled-coil structures. Moreover, the same states...
forming this structural ensemble are observed in four different membrane environments. These results based on a multiscale modeling approach that accounts for a detailed picture of the protein–lipid interactions provides clear support for the dominance of the right-handed coiled-coil structure for the WT C99

φ

23

−

55

homodimer in a lipid bilayer. The simulations further suggest that lipid composition may be critical in determining the degree of helicity in the TM region, which appears to be enhanced in the homodimer relative to the monomeric peptide.

Anionic Lipids Form Thinner Bilayers in Anchoring C99

φ

23

−

55

Peptides. We simulated the CG self-association of C99

φ

23

−

55

dimers in single-component anionic bilayers formed by 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) or POPG lipids. We found the peptide conformational distributions in the negatively charged lipid bilayers to be strikingly similar to distributions observed in thinner PC lipid bilayers. Comparison of density profiles, for anionic (Fig. 7) and PC (Fig. 5) lipid bilayers, shows the lipid density profile is wider in the negatively charged DOPG and DOPS membranes compared with the zwitterionic POPC membrane. Despite the differences in bilayer thickness, the positions of anchoring residues K28 and K53 are nearly identical. As a consequence, the structural ensemble of the C99

φ

23

−

55

dimer association in a negatively charged bilayer is comparable to that of thinner PC membrane.

Despite the similarity in the spatial distribution of anchoring residues, the overall homodimer structural ensemble is observed to be substantially broader in bilayers formed by anionic lipids. In particular, in anionic lipid bilayers there is a higher probability of Gly-out structures as well as Gly-side structures with φG values near zero (Fig. 7, Top).

Comparison with Structural Ensembles of GpA and EphA2 Homodimers Shows Dramatic Sequence Effects. It is instructive to compare our predicted structures for C99

φ

23

−

55

dimers with other well-studied membrane-spanning proteins. Among such TM proteins, dimerization of GpA is also thought to be a consequence of interactions facilitated by GxxxG motif repeats forming right-handed coiled-coils (1, 6, 35). Typically, a diversity of structures of coiled-coils interactions are found in TM helices, including homodimers or heterodimers with right- or left-handed crossing angle between the helices. Moreover, dynamic conformations of TM helix dimers are deemed to be essential for physiological function of TM proteins (36–38). One important coiled-coil TM helix is the human EphA2 receptor tyrosine kinase, which forms dimer conformations affected by the thicknesses of the lipid bilayer. In thick bilayers, EphA2 TM forms a left-handed (+15°) TM dimer stabilized by a heptad repeat motif, whereas in thinner membranes the EphA2 TM dimer is characterized by a glycine zipper motif and a right-handed (−45°) crossing angle between the helices (39).

The predominance of Gly-out in DOPS bilayers results from the presence in EphA2 of a GxxxG motif in the midsection of the TM helix, in contrast to the location of the GxxG repeats in the N-terminal region of the TM helix of C99. The different location of the stabilizing motif is responsible for an enhanced Gly-out population in EphA2 relative to C99, which is particularly evident in the wide bilayers. In contrast, in thin DMPC bilayers, the Gly-in state is relatively more favorable in stabilizing EphA2 homodimers. This behavior contrasts with the relative population of Gly-in and Gly-out states in C99, which are unaffected by bilayer thickness. It is important to note that EphA2 has a GxxxG motif as well as a AxxxG motif, the latter stabilizing coiled-coiled states even when the environment disfavors direct interactions between the GxxxG interfaces (Fig. 8).

Discussion

Our multiscale simulation study, which can be readily adopted to study other membrane proteins, has demonstrated that lipid composition of membranes influences the structure and stability of C99

φ

23

−

55

homodimers as well as the integrity of the TM helical region in the monomeric peptide. The monomer structure of the C99

φ

23

−

55

peptides in different membrane composition is slightly modified by the membrane. The kink angle formed between the N- and C-terminal fragments of the TM helix increases with decreasing width of the hydrophobic core of the membrane. A similar effect was observed on the TM “tilt” angle, which decreases with increasing width of the membrane’s hydrophobic core. At the same time, the helix stability decreases, particularly in the kink or GG hinge region, when the membrane width is diminished.

Homodimer Structures Are Conformationally Heterogeneous. The ground-state structure of the C99

φ

23

−

55

dimer supports earlier predictions, based on simplified models or limited experimental
data, that the homodimer structure of C99\textsubscript{23–55} is a right-handed \(\lambda \)-like coiled-coil stabilized by interpeptide interactions. Importantly, we also found that the specific lipid composition of the membrane impacts the bilayer width, which biases the TM helix tilt orientation of the monomeric versus the dimeric structure of the membrane. The conformational ensemble is heterogeneous with the energy landscape comprising three conformational states that define the overall right-handed coiled-coil homodimer ensemble. Furthermore, the particular importance of one state relative to another is modulated by the lipid composition of the membrane bilayer. It has been previously proposed that diminished stability of the Gly-in homodimer inhibits the production of the most toxic \(\beta \)-amyloid \(\alpha \)-peptide and was observed to have a Gly-out topology that differed from the previously proposed Gly-in structures that were based on simulation and solid-state NMR data (7, 8, 43).

The structure of C99\textsubscript{23–55} was observed in a membrane environment with implications between competing homodimer structures, stabilizes Gly-in homodimer structures relative to separated monomers in a POPC bilayer while destabilizing Gly-out homodimers. (3) Gly-out homodimers present more hydrophilic surface area than Gly-in structures, providing a relative stabilization of Gly-out homodimers in thin bilayers and micelles in which deeper water penetration leads to greater peptide–solvent contact.

Membrane thickness impacts the processing of APP by \(\gamma \)-secretase and affects the overall production of \(\beta \) and \(\alpha \)-peptide and the ratio of \(\beta \)-40/\(\beta \)-42. Our results demonstrate that membrane composition does influence membrane thickness, which can alter both the depth of insertion of the peptide into the membrane, and impact the formation of precursor cleavage of the TM by \(\gamma \)-secretase. Moreover, our results show that membrane lipid composition influences the structure and stability of the C99 homodimer, with thicker membranes stabilizing Gly-in conformations. This is yet another factor that determines the processing mechanisms of C99 by \(\gamma \)-secretase.

Materials and Methods

We used a multiscale computational approach, combining MD and REMD simulations (46), to determine the structure of APP homodimers whose cleavage is crucial for the initiation of AD. Three distinct models were simulated (Table S1): (i) all-atom representations of the protein in an implicit membrane (47); (ii) CG models of the protein, lipids, and solvent using the Martini force field (48–50); and (iii) all-atom CHARMM36 force field model for the protein, membrane, and solvent environments (51–55).

Simulation details are given in Supporting Information.

ACKNOWLEDGMENTS. We are thankful for the resources of the Center for Computational Science at Boston University. We acknowledge the support of National Science Foundation Grants CHE-0910433 and CHE-1362524, and NIH Grant R01 GM107703. J.E.S. and L.D. thank the Schulerberger Foundation “Faculty for the Future Program” and Consejo Nacional de Ciencia y Tecnología for the generous support of our research.

