Metal dependence and branched RNA cocrystal structures of the RNA lariat debranching enzyme Dbr1

Nathaniell E. Clark^{1,2,3}, Adam Katolik^{4,5}, Kenneth M. Roberts², Alexander B. Taylor^{6,7}, Stephen P. Holloway³, Jonathan P. Schuermann⁸, Eric J. Montemayor⁹, Scott W. Stevens^{10,11}, Paul F. Fitzpatrick^{2,3}, Masad J. Damha^{2,12}, and P. John Hart^{6,13},2

¹Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229; ²Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada; ³Department of Chemistry & Physics, University of South Carolina Aiken, Aiken, SC 29801; ⁴Department of Chemistry and Physics, University of California Riverside, Riverside, CA 92521; ⁵Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; ⁶Department of Biochemistry and Molecular Biology, University of Wisconsin, Madison, WI 53706; ⁷Department of Molecular Biosciences, The University of Texas, Austin, TX 78712; ⁸Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712; and ⁹Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, TX 78229.

Edited by Graham C. Walker, Massachusetts Institute of Technology, Cambridge, MA, and approved November 15, 2016 (received for review August 1, 2016)

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2′,5′- and 3′,5′-phosphodiester linkages. The 2′,5′-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from <i>Entamoeba histolytica</i> by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ~3 s^{−1}. Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)-Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ~4.0 s^{−1} is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the α-pocket and Zn to the δ-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.

RNA debranching | intron lariat | enzyme kinetics | X-ray crystallography | Dbr1

The enzymatic processing of diverse RNA molecules requires selective recognition of their unique physicochemical properties. The sequential trans-esterification reactions catalyzed by the spliceosome yield mature messenger RNA (mRNA) and excised intron lariats (1, 2), the latter of which contain internal branchpoint adenosine nucleotides harboring vicinal 2′,5′- and 3′,5′-phosphodiester linkages (3). Mature mRNA transcripts are exported to the cytosol for protein synthesis, but lariat introns must be linearized before they can be turned over or processed into the subset of small nucleolar RNAs and microRNAs that are derived from intronic RNA (4, 5). The lariat forms when the 2′-hydroxyl group of an adenosine nucleotide near the 3′-end of the intron acts as the nucleophile to attack the 5′-splice site, producing 5′-exon-3′-OH and intron lariat/3′-exon intermediates. The 3′-hydroxyl group of the 5′-exon-3′-OH intermediate subsequently acts as the nucleophile to attack the 3′-splice site, resulting in intron excision and exon ligation (6, 7) (Fig. 1A). The resulting vicinal 2′,5′- and 3′,5′-phosphodiester linkages confer unique topological and chemical features to the branchpoint and flanking nucleotides, and these lariats persist in yeast cells lacking active Dbr1 (RNA lariat debranching enzyme) protein (8), the metallophosphoesterase known as the RNA (intron) debranching enzyme. Intron lariats accumulate to unnaturally high levels in Δdbr1 strains of <i>Saccharomyces cerevisiae</i>, suggesting hydrolysis of the 2′,5′-linkages is rate-limiting in intron processing and turnover after splicing (8). A central role for Dbr1 activity in normal RNA metabolism is supported by findings that Δdbr1 strains of <i>Schizosaccharomyces pombe</i> exhibit severe morphological and growth defects (9), whereas ablation of the <i>Dbr1</i> gene in higher eukaryotes is lethal (10, 11), presumably due to their need for a larger array of essential intron-derived small nucleolar RNAs and microRNAs.

RNA debranching activity was first detected in HeLa cell extracts in 1985 (3). Hydrolysis was selective for 2′,5′-phosphodiester linkages, but RNA nucleotides linked solely by 2′,5′-phosphodiester bonds were not substrates, suggesting the vicinal 2′,5′- and 3′,5′-phosphodiester linkages act as specificity determinants in RNA lariat branchpoint recognition (3). The addition of 10 mM EDTA abolished activity, suggesting a requirement for divalent cations (12). The gene encoding the enzyme was subsequently identified in yeast genetic screens designed to identify factors involved in Ty1 retrotransposon mobility. Ablation of the <i>Dbr1</i> gene reduced the frequency of transposition with the concomitant accumulation of intron lariats (8). More recently, knockdown of human Dbr1 (hDbr1)

Significance

The RNA lariat debranching enzyme Dbr1 cleaves the 2′,5′-phosphodiester linkages in intron lariats generated during pre-mRNA splicing. The enzyme is central to RNA metabolism because its activity is required for intron turnover and for the production of small nucleolar RNAs and microRNAs encoded in intronic RNA. Here, the kinetics of Dbr1-mediated debranching of a synthetic RNA substrate are measured by using apoenzyme reconstituted with various divalent cations. The results suggest Fe and Zn are preferred cofactors. Structures of a binuclear catalytic mutant in complex with bona fide branched RNAs reveal a metal-bridging hydroxide positioned to attack the scissile phosphate. The results clarify structure/function relationships in Dbr1 enzymes and are guiding the search for inhibitors that hold promise as therapies for retroviral infections and neurodegenerative disease.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID codes 5K71, 5K73, 5K77, and 5K89).

¹N.E.C. and A.K. contributed equally to this work.
²To whom correspondence may be addressed. Email: clarkne@uthscsa.edu, fitzpatrickp@uthscsa.edu, masad.damha@mccgill.ca, or pjh@biochem.uthscsa.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612729114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1612729114

PNAS Early Edition | 1 of 6
gene expression was reported to significantly diminish retroviral replication in cells infected with the HIV (13, 14). This observation is consistent with the evolutionarily conserved genetic structures and replication mechanisms of retrotransposons and retroviruses (15, 16). Together, these studies implicate the RNA lariat debranching enzyme as a participant in retroelement and retroviral replication, although the precise mechanism(s) through which it facilitates these processes remains unclear. Hypotheses regarding the molecular mechanism(s) of Dbr1 in these systems are discussed (17-21).

Yeast Dbr1 isolated from *Escherichia coli* was reported to possess biochemical properties indistinguishable from the enzyme isolated from yeast (22). Substrates included Y-like trans-splicing intermediates, group II intron lariats, and multicopy single-stranded DNAs (msDNAs) in which the RNA components are attached to the 5′-DNA portions via 2′,5′-phosphodiester linkages (22). Yeast Dbr1 (yDbr1) was active “as-purified,” although EDTA inhibited activity at concentrations of 25 mM or greater, reinforcing the suggestion that a bound metal ion is required for debranching activity. Debranching experiments using msDNAs and “Y”-shaped synthetic bRNAs harboring various branchpoint and flanking nucleotides revealed a strong preference for purines at the 2′-flanking nucleotide position and branchpoints flanked by single 2′,3′, and 5′ nucleotides were sufficient as substrates for yDbr1, suggesting extensive lariat RNA/enzyme interactions are not a prerequisite for branchpoint recognition (22). In subsequent work using comparative sequence analyses, site-directed mutagenesis, and gel-based RNA debranching assays, Khalid et al. concluded that yDbr1 is a manganese-dependent member of the MPE superfamily of enzymes. The addition of exogenous Zn and other divalent cations was found to suppress debranching activity (23).

The first Dbr1 structures determined were from *Entamoeba histolytica* (EhDbr1) (24). EhDbr1 is shorter than Dbr1 from higher eukaryotes (354 vs. ~550 residues) that thus far have been recalcitrant to crystallization. The structures revealed the first 261 residues adopt the canonical MPE fold with adjacent α and β metal-binding pockets. Features unique to EhDbr1 include a 28-residue insertion loop immediately adjacent to the active site (residues 130–158) and an invariant cysteine residue (Cys14) in the position of the canonical Asp in the α pocket (25, 26). Because previous work suggested yDbr1 is Mn-dependent (23), 1 mM MnCl₂ was added to the EDTA-treated enzyme before crystallization. The resulting wild type and inactive C14S EhDbr1 structures were unexpectedly mononuclear, with Mn(II) in the β-pocket and a water molecule coordinated to the Mn(II) ion occupying the position expected for the putative α-site metal (26). Alignment of the backbones of structures of EhDbr1 in complex with product analog 5′-GMP and with a synthetic RNA possessing a 2′-phosphate monooester at the branchpoint adenosine (AK65), superimposed their 5′- and 2′-phosphate moieties, respectively, suggesting a model of an intact lariat branchpoint with flanking nucleotides bound at the active site (24). The conserved 28-residue insertion loop interacts extensively with nucleotides in the putative 3′-arm of the branchpoint and is thus termed the “lariat recognition loop.” The data suggested a mononuclear mechanism of hydrolysis in which the invariant α-pocket Cys serves as a catalytic base to activate the metal-bound water nucleophile for attack on the scissile phosphorus atom, with H91 poised to protonate the 2′-O leaving group. However, because essentially all characterized MPEs harbor metal ions in both binding pockets (26) and because Cys residues are excellent ligands for certain metal ions, a binuclear mechanism could not be ruled out (25).

Since the discovery of RNA debranching activity more than 30 years ago, measurement of this activity depended upon gel-based autoradiographic assays in which enzyme and intron lariat substrates are preincubated followed by examination of the mobility of the RNA species postincubation (3, 9, 12, 22, 23, 25). Importantly, however, the metal contents of purified Dbr1 proteins have never been characterized and in the absence of endogenous metal binding information, existing gel-based debranching activity data in which exogenous metal ions were added to purified (and potentially metal-replete) Dbr1 proteins are difficult to interpret (12, 22, 23, 27). More recently, gel-based complementation assays in which Dbr1 and its variants are expressed in *trans* have been developed to probe structure/function relationships via the ability of these proteins to alleviate the intron lariat accumulation phenotype in Δdbr1 yeast (23, 25, 28). Although both types of electrophoretic assays are useful as qualitative monitors of debranching activity and as probes of the participation of various amino acid residues in substrate binding and catalysis, they have shed little light upon the kinetic parameters of the enzyme and are complicated by the task of obtaining uniform (and stable) intron lariat substrates.

Here, we measure the kinetics of EhDbr1-mediated debranching of a fluorogenic bRNA substrate that permits real-time, continuous monitoring of the hydrolysis of 2′,5′-phosphodiester linkages. Inductively coupled plasma mass spectrometry (ICP-MS) analyses reveal that highly active, wild-type EhDbr1 contains stoichiometric amounts of Ca, Fe, and Zn, but undetectable levels of Mn, Mg, Ni, Co, and Cu. Wild-type EhDbr1, apo-EhDbr1 reconstituted with a mixture of Fe and Zn, and apoenzyme reconstituted with Fe(II) hydrolyze the fluorogenic probe at rates between 3–4 s⁻¹. Apo-EhDbr1 reconstituted with Zn alone yields rates 25–33% slower, whereas apoenzyme reconstituted with Mn alone does not support...
debranching activity. Crystal structures of the inactive EhDbr1 variant H91A in complex with 7-mer and 16-mer bRNAs reveal extensive protein interactions with flanking 2'−3′-nucleotides but a paucity of interactions with the 5′-arm. All structures except the apoenzyme are binuclear with a water/hydroxide bridging the Fe and Zn ions in optimal position to attack the scissile phosphate. The results resolve previous uncertainties regarding Dbr1 active site structure and the newly developed dark-quenched bRNA probe is facilitating the screening of large small molecule libraries for Dbr1 inhibitors that may hold promise as therapeutic agents for neurodegenerative diseases such as ALS (29) and for retroviral infections such as HIV (13, 14, 17).

Results

Synthetic bRNAs for Kinetic and Structural Studies. The 10-mer AK88, the 7-mer AK49, and the 16-mer AK86 bRNAs used here were synthesized via solid-phase methods that yield branched oligoribonucleotides of desired length, base composition, and regiochemistry at the branchpoint junction (25) (Fig. 1B). The sequence integrity of the synthetic products was cross-validated by using recombinant Dbr1-mediated debranching assays, HPLC, and electrospray ionization mass spectrometry (25, 30). AK88 is designed as a reporter of Dbr1 activity. It possesses a 6-carboxyl-fluorescein (6-FAM) fluorophore covalently linked to the 5′-arm and a 4-[(4-Dimethylamino)phenylazo]benzoic acid (DABCYL) quencher covalently linked to the 2′-arm. The proximity of the DABCYL to the 6-FAM suppresses the latter’s fluorescence, but this quenching is relieved upon Dbr1-mediated hydrolysis of the 2′,5′-phosphodiester bond (Fig. 1C). All three constructs possess the canonical adenosine branchpoint and flanking nucleotides generated when an adenosine nucleotide in the donor site acts as the nucleophile to attack the scissile phosphate oxygen atom (AK49 complex) and the water/hydroxide bridging the two metal ions, although the positions of the bridging species differ in the RNA-bound versus free forms (compare Fig. 3A and C). The Fe ions in the β-sites of both structures are coordinated in a geometry best described as distorted octahedral with D45, N90, H230, and the bridging OH− serving as equatorial ligands, whereas H180 and either a water molecule (wild-type) or phosphate oxygen atom (AK49 complex) act as axial ligands. In the wild-type enzyme, the α-pocket Zn ion is coordinated in a pseudotrigonal bipyramidal geometry with Cys14, H116, and the bridging OH− acting as equatorial ligands and D45 and H232 acting as axial ligands. In the AK49 complex, the Zn ion is bound in the α pocket in a distorted octahedral geometry, with H16, D45, H232, and the bridging OH− serving as equatorial ligands and Cys14 and an oxygen atom coming from the scissile phosphate serve as axial ligands. The distortion in octahedral geometry arises because the scissile phosphate oxygen, the Zn ion, and the Sγ atom of Cys14 are not colinear, with the position of the scissile phosphate oxygen atom displaced from colinearity by ~23° (compare Fig. 3B and D). Coordination distances for each of the five protomers in the asymmetric unit are given in Table S2.

Metal Content and Enzymatic Activity. In independent purification runs, wild-type EhDbr1 expressed in E. coli contained, on average, 0.7 eq. Fe, 0.7 eq. Zn, and 1.0 eq. Ca per polypeptide as measured by ICP-MS. Mn, Mg, Ni, Co, Cu, and other divalent cations were undetectable. Addition of Mn, Fe, or Zn to the growth medium did not alter the metal content of the enzyme. Adding exogenous Mn(II) to standard assays did not alter the activity of the purified wild-type enzyme, but the activity of the enzyme decreased in the presence of Zn(II) (Fig. S3). Metal-free EhDbr1 was prepared by extensive dialysis of freshly purified enzyme against EDTA/NTA-containing buffer (Materials and Methods and SI Materials and Methods). Reconstitution of the apoenzyme with a mixture of Fe(II) and Zn(II) under aerobic conditions followed by gel filtration to remove excess metal yielded enzyme that catalyzed AK88 hydrolysis at the same rate as the freshly purified holoenzyme, ~3 s−1 (Fig. 2A). In contrast, apo-Dbr1 reconstituted with Zn(II) alone had a significantly slower rate of less than 1 s−1, and apo-Dbr1 reconstituted aerobically with Mn(II) or Fe(II) alone did not have significant debranching activity (Fig. 2A). Of the metals tested (Fe, Zn, Mn), only Fe(II) is sensitive to oxidation by O2, so the Fe (II) reconstitution was also performed anaerobically. When the apoenzyme was mixed with Fe(II) under anaerobic conditions, the rate exceeded 4 s−1 (Fig. 2A). The results suggest that Fe(II) added to the apoenzyme under aerobic conditions was oxidized to Fe(III), and that the activity seen with Fe in the β-pocket of the wild-type enzyme (Fig. 3A and C) is due to Fe(II).

Crystal Structures of EhDbr1. The new structures described here include the following: (i) wild-type EhDbr1 containing Fe+Zn (Fig. 3A and B); (ii) wild-type enzyme stripped of its metal ions (apo-EhDbr1, Fig. S4); (iii) H91A EhDbr1 in complex with the 7-mer bRNA AK49 (Fig. 3C and D and Fig. S4); and (iv) H91A EhDbr1 in complex with the 16-mer bRNA AK86 (Fig. 3E and Fig. S6). All EhDbr1 structures determined to date are isomorphous in space group P212121 with five protomers in the asymmetric unit. The 20 protomers coming from the four EhDbr1 structures reported here superimpose with an average rmsd of 0.21 Å for all backbone atoms. Diffraction data and protein structure refinement statistics are given in Table S1. The metal content of H91A EhDbr1 was similar to that of the wild-type enzyme. The identities of the metal ions in the α and β pockets in the wild-type and AK49/ H91A EhDbr1 complex structures were visualized directly through inspection of anomalous difference Fourier electron density maps by using X-rays tuned to the Fe absorption edge (7.11 keV, 1.74 Å). At this wavelength, iron is illuminated but zinc (9.66 keV, 1.28 Å) is not. The magnitudes of the peaks in the anomalous difference Fourier map reveal that iron partitions predominantly to the β pocket in these structures (Fig. 3A and C and Table S2), but Fe is present to varying degrees in the α pocket in the wild-type enzyme (Fig. 3C and Table S2). The structures of wild-type EhDbr1 and H91A EhDbr1 in complex with AK49 reveal a water/hydroxide bridging the two metal ions, although the positions of the bridging species differ in the RNA-bound versus free forms (compare Fig. 3A and C). The Fe ions in the β-sites of both structures are coordinated in a geometry best described as distorted octahedral with D45, N90, H230, and the bridging OH− serving as equatorial ligands, whereas H180 and either a water molecule (wild-type) or phosphate oxygen atom (AK49 complex) act as axial ligands. In the wild-type enzyme, the α-pocket Zn ion is coordinated in a pseudotrigonal bipyramidal geometry with Cys14, H116, and the bridging OH− acting as equatorial ligands and D45 and H232 acting as axial ligands. In the AK49 complex, the Zn ion is bound in the α pocket in a distorted octahedral geometry, with H16, D45, H232, and the bridging OH− serving as equatorial ligands and Cys14 and an oxygen atom coming from the scissile phosphate serve as axial ligands. The distortion in octahedral geometry arises because the scissile phosphate oxygen, the Zn ion, and the Sγ atom of Cys14 are not colinear, with the position of the scissile phosphate oxygen atom displaced from colinearity by ~23° (compare Fig. 3B and D). Coordination distances for each of the five protomers in the asymmetric unit are given in Table S2.

Fig. 2. Effect of added metals on apo-EhDbr1. (A) The catalytic activity of EhDbr1 with AK88 as substrate was determined after adding the indicated metals to the apoenzyme as described in Materials and Methods. The experiments were done aerobically for the samples in red and anaerobically for those in blue. The column labeled wild-type refers to the enzyme before treatment with chelators. (B) UV/Vis spectra of selected samples from A. The numbering of each trace is shown above its corresponding bar in A.
Discussion

A Fluorogenic Assay for Debranching Activity and the Metal Preferences of Dbr1. Until now, characterization of RNA debranching activity depended on gel-based autoradiographic assays in which enzyme and intron lariat substrates were preincubated with millimolar concentrations of MgCl₂ (3, 9, 12, 22, 23, 25). Several groups have reported that Dbr1 was required at concentrations 10- to 100-fold over substrate to observe a mobility shift in a reasonable time frame (e.g., 30-60 min). One exception was yDbr1, which acted catalytically in the presence of Mn but not Mg (23). The requirement for a large excess of enzyme in most cases suggests that only a small subset of Dbr1 molecules were active in those assays. The availability of the bRNA substrate AK88 described here permits hydrolysis by purified and reconstituted Dbr1 proteins to be monitored in real time by using a fluorometer, thereby providing a simple and convenient way to measure activity.

The data presented here suggest that EhDbr1 is a binuclear enzyme, with Fe(II) and Zn(II) conferring the highest rates of hydrolysis. First, EhDbr1 purified after expression in E. coli possesses nearly stoichiometric amounts of Fe and Zn, but undetectable levels of Mg, Mn, Co, Ni, Cu, or Cd. Second, the metal centers in the structures of wild-type EhDbr1 and H91A EhDbr1 in complex with AK49 reveal binuclear centers with a bridging water molecule/hydroxide ion (Fig. 3 A–D). Third, EhDbr1 containing homobinuclear centers Fe(II) or Zn(II) support debranching activities of 4 and 1 s⁻¹, respectively, whereas enzyme containing a heterobinuclear Fe(II)/Zn(II) center has a rate of 3 s⁻¹ (Fig. 24). Finally, diffraction data from crystals of enzyme using X-rays tuned to the Fe absorption edge reveal that Fe partitions primarily to the β-pocket (Fig. 3A and C and Table S2). This observation that metal-free EhDbr1 reconstituted with a solution of dimethylsulfoxide/Fe(II) under aerobic conditions is inactive can be attributed to oxidation to Fe(III), which does not support activity (Fig. 2A and B). Taken together, the kinetic and structural data suggest the enzyme requires Fe(II) and/or Zn(II) in the α-pocket for activity.

Yeast Dbr1 was reported to be a manganese-dependent enzyme (23), in contrast to the results reported here with EhDbr1. Thus, available evidence indicates that γDbr1 and EhDbr1 have different metal cofactor requirements. We cannot rule out the possibility that EhDbr1 is active with Mn, but the affinity of that metal for the enzyme is much lower than the affinity for Fe or Zn (Fe was not tested with the yeast enzyme). We have found that EhDbr1 precipitates in the presence of mM Zn; this precipitation may explain the lack of observed activity of the yeast enzyme in the presence of 2.5 mM Zn. The lack of an effect of added Mn on wild-type EhDbr1 (Fig. S3) can be attributed to that enzyme already having a full complement of metal bound.

Mechanism of Dbr1-Mediated Intron Debranching. The structure of the Fe+Zn-containing wild-type enzyme represents the resting state (Fig. 3A and B), whereas the structure of the EhDbr1 variant H91A in complex with AK49 represents a snapshot of the bRNA/enzyme complex immediately before hydrolysis. Our previous structural work on mononuclear Dbr1 implicated H91 as the catalytic acid (24) because it appears poised to protonate the 2′-O leaving group during hydrolysis in the structure of the EhDbr1/AK65 complex. Indeed, H91A EhDbr1 is inactive, enabling the first direct visualizations of bona fide 2′,5′-phosphodiester linkages bound to the enzyme. The position of the bridging water/hydroxide in the resting state (Fig. 3A and B) is approximately the same as the scissile phosphorous atom of the 2′,5′-phosphodiester linkage in the EhDbr1/AK65 complex (Fig. 3C and D). Upon binding of AK49, the bridging aquo species is displaced to a new bridging position where it is stabilized by a hydrogen bond to the carbonyl oxygen of H230, a ligand to the β-pocket Fe atom (Fig. 3C and D). The active site structure suggests a Sn2 mechanism of hydrolysis in which the metal ions serve as Lewis acids to polarize the bridging oxygen-phosphorous bonds, increasing the electrophilic character of the scissile phosphorous (Fig. 4). The position of the bridging OH⁻ species appears optimal for nucleophile attack at a distance of 3.1 Å. The reaction is predicted to proceed through a trigonal bipyramidal pentacoordinate transition state with inversion of configuration and protonation of the 2′-O leaving.
The structures of the 7-mer and 16-mer D and G Figs. S5 of 6 μ[X] and H PNAS Early Edition with Mn(II) Fig. S5 [X]. The 5′-arm and 5′-arm, whereas AK86 possesses five nucleotides in each arm. The branchpoint and flanking nucleotides of both constructs mimic those found in the S. cerevisiae consensus splice site (Fig. 1A and B). The 5′-arms are disordered in both structures, suggesting they do not play a significant role in branchpoint recognition. In contrast, extensive enzyme/RNA interactions appear at the branchpoint adenosine, the flanking guanosine in the 2′-arm and the flanking cytidine and adenosine of the 3′-arm. Together, these four nucleotides participate in eight protein/RNA hydrogen bonds, three protein/RNA aromatic stacking interactions, and one RNA/RNA base stacking interaction (Fig. S5A). The flanking 2′-G forms hydrogen bonds with the side chains of G101 and D205 and base stacks with the cytidine of the flanking 3′-C that, in turn, donates two hydrogen bonds to the side chain of K134 of the lariat recognition loop (LRL). LRL residues I132, F155, and H156 make extensive contacts with the ribose ring and the 3′,5′-phosphodiester bond linking the 3′-C and terminal 3′-A (Fig. S5A). The second flanking nucleotide in the 3′-arm (3′-A) base-stacks with the side chain of F136 of the LRL. Although two nucleotides are present in the 2′-arm of AK-49, only the flanking guanosine is visible in the structure of the complex (Fig. S5A). The extent of these interactions is consistent with previous findings that a trimucleotide consisting of one branchpoint adenosine with single flanking 2′- and 3′-nucleotides is recognized and cleaved by Dbr1 (12).

In contrast, in the structure of the AK86/εH/Dbr1 complex, all five nucleotides of the 2′-arm are visible and these nucleotides engage the enzyme at the junction of a β-hairpin formed by residues 233–249 and a helix-turn-helix insertion element formed by residues 179–212 (Fig. S6). Together, these structural elements form a platform that projects from the metal center around which the nucleotides of the 2′-arm wrap. The third nucleotide of the 2′-arm (adenosine) is completely devoid of interactions with protein (Fig. 3E and 3F). The fourth and fifth nucleotides in the 2′-arm make aromatic stacking interactions with Y252 and F198, respectively. The aromatic base-stacking between the flanking 2′-G, and 3′-C (Fig. 3E and Figs. S5 and S6) combined with extensive interactions with the enzyme cause the branchpoint adenine base to be exposed and to protrude in a direction opposite to the flanking stacking 2′- and 3′-bases, where it is sandwiched in aromatic stacking interactions between H116 and Y64. In their seminal 1985 paper, Ruskin and Green (3) reported poly-A RNA linked solely by 2′,5′-phosphodiester bonds is not a substrate for human Dbr1. The structure of the AK49/εH/Dbr1 complex permits rationalization of this observation. If 2′,5′-linked poly-A RNA binds analogously to the branchpoint adenosine in AK49 and AK86, the 2′-G is replaced by a 2′-A with the loss of two protein–RNA hydrogen-bonding interactions (Fig. S5B). Because 2′,5′-linked poly-A RNA does not possess the equivalent of a 3′-arm, it would be devoid of all of the previously stabilizing interactions. In addition, the 5′,3′-phosphodiester bond linking the 2′-G and 2′-U in AK86 and AK49 (Fig. 3E and Figs. S5A) would be replaced by a 2′,5′-phosphodiester linkage between adenosine nucleotides, a linkage predicted to clash with F202 and other nearby residues (Fig. S5B).

The Invariant Cys in the α-Pocket of Dbr1 Enzymes. MPEs possess the conserved signature sequence Dα[XH₃]₄[X₆] GΔD₆₆₃[X₆] GN₄[H/E/F] [X₆] α[X₆] α[XH₃]₄[X₆] α[X₆] GΔH₄[XH₃]₄[X₆], where underlined/italicized letters correspond to metal ligands, α and β to the binding pockets in which the ligands reside, and X to any amino acid (26). Despite the conservation of metal-binding residues, the repertoire used by various MPEs is diverse and signature sequence-containing enzymes bind Mn(II), Fe(II), Fe(III), Zn(II), Co(II), Cda(II), and Ni(II) (reviewed in ref. 32). Fe(II) and Zn(II) are abundant in biological systems, at levels ∼50-fold higher than Mn(II) (∼30 μM vs. 6 μM; ref. 33). Still, Mn(II) is commonly found in MPEs and was reported to support the highest phosphoesterase activity among divergent cations tested in Mre11 (34, 35), S-nucleotidase (36, 37), MPPE2 (38, 39), and yeast Dbr1 (23). Superposition of the Mre11 and Dbr1 binuclear centers reveals they are indeed similar, including the position of the bridging nucleophile, except for the substitution of the first aspartic acid in the signature sequence with Cys in Dbr1 (Fig. S7). Examples of Cys serving as a ligand to Mn(II) are rare, with the RNA ligase RtcB being a notable example (40). In the MESPEUS database of metal sites in proteins (mined from the PDB), there are 35 examples of Cys coordinating Mn ions, 6,023 examples of Cys coordinating Fe ions, and 8,069 examples of Cys coordinating Zn ions (41). The inability of the α-pocket of Dbr1 to bind Mn(II) was evident in previous work in which EDTA-treated εH/Dbr1 crystallized in the presence of 1 mM MnSO₄ with Mn(II) only in the β-pocket (24). Even when the concentration of MnSO₄ in the crystallization buffer was increased to 10 mM, there was no Mn in the α-pocket.

We speculate that the presence of the α-pocket Cys ligand reflects the metal preferences of Dbr1. Although Fe(II) and Zn(II) provide the highest turnover rates in our kinetic assays with εH/Dbr1 (Fig. 2), it remains to be demonstrated that other Dbr1 orthologs (such as yeast Dbr1) also prefer Fe(II) and Zn(II). More experiments are required to explain why Dbr1 enzymes harbor a Cys in the α-pocket, instead of the Asp found in other MPEs. Whether modulation of Fe(II) and Zn(II) levels affects Dbr1 activity in vivo also remains to be demonstrated.

Materials and Methods

Detailed procedures are given in SI Materials and Methods. Briefly, the Dbr1 gene from E. histolytica was codon optimized (DNA 2.0; Genscript), expressed as a His-tagged fusion protein in E. coli strain BL21 (New England Biolabs), and purified by using a Ni-Sepharose Fast Flow column (GE Healthcare). The metal

Fig. 4. Divergent stereo view of the proposed mechanism of εH/Dbr1-mediated hydrolysis of intron lariats. The bridging OH− is in position for nucleophilic attack on the 2′,5′-phosphodiester linkage. The reaction proceeds via a S₄₋₂ mechanism of hydrolysis through a trigonal bipyramidal pentacoordinate intermediate, followed by inversion of configuration and conclusion when the 2′-O leaving group is protonated by H91. The red arrows indicate electron flow during the reaction.

Clark et al.
content was determined by ICP-MS at the Chemical Analysis Laboratory at the University of Georgia. APO enzyme was obtained by dialyzing Dbr1-containing fractions against biphasic buffer [10 mM EDTA, 10 mM NTA, 20 mM HEPES, pH 7, 50 mM NaCl, and 1 mM tris(2-carboxyethyl)phosphine (TCEP)] at 4 °C for 72 h followed by dialysis against assay buffer (50 mM Hepes pH 7, 100 mM NaCl) that had been treated with 10 g of Chelex resin (Bio-Rad) per liter of buffer. Kinetic assays were performed by using 5 μM enzyme (final concentration) to eliminate effects of trace metal ions remaining in the assay buffer. A Perseus plate reader (BMG Labtech) in rapid kinetic mode and a stopped-flow mixing spectrophotometer (Applied Photophysics) were used for aerobic and anaerobic kinetic assays, respectively. For measurement of steady-state kinetic parameters, the inner-filter effect was corrected for using the method described in ref. 42. Crystals of E6Dbr1 grew in 0.1 M Bis-Tris pH 5.5 made 10−17% (wt/vol) PEG 3350, 0.4 M LiSO₄, 10% (vol/vol) glycerol in hanging-drop plates. Diffraction data were taken at the Advanced Photon Source 24 ID-C beamline with a Pilatus-6M Pixel Array Detector operated by Northeast Collaborative Access Team (NE-CAT). The programs XDS (43), AIMLESS (44), PHENIX (45), and COOT (46) were used for data integration, scaling, model refinement, and model building, respectively. Structure factors and model coordinates are deposited in the PDB with codes: SK71, SK73, SK77, and SK78 for apo-, wild-type, AK49/H91A, and AK86/H91A Dbr1 structures, respectively.

ACKNOWLEDGMENTS. P.J.H. was supported in part by Merit Review Award 101 BX0025801 from the US Department of Veterans Affairs, Biomedical Laboratory Research and Development Service, S. Texas Veterans Health Care System, and in part by a Welch Foundation Grant AQ-1399 and by the Judith and Jean Pape Adams Charitable Foundation. M.J.D. was supported by a Discovery Grant from the National Sciences and Engineering Research Council of Canada. S.W.S. was supported by National Institutes of Health (NIH) Grant GM084246. N.E.C. and E.J.M. were supported by NIH Grant T-32 AG021890 through the Barshop Institute for Longevity and Aging Studies. E.J.M. was supported by Grant D01-0905865 through the National Science Foundation. P.F.F. and K.K.M. were supported by Grant AQ-1245 from The Welch Foundation. Support for NE-CAT beamline 24-ID-E is provided by NIH Grant P41 GM103403 and US Department of Energy Grant DE–AC02–06CH11357. The X-Ray Core Laboratory at University at Texas Health Science Center, San Antonio (UTHSCSA) is supported in part by the Office of the Vice President for Research and by San Antonio Cancer Institute Grant P30 CA545174. Equipment and technical expertise were provided by the Center for Innovative Drug Discovery and High Throughput Screening Facility at UTHSCSA, which is supported by Grant U1L TR001120 from the National Center for Advancing Translational Sciences, NIH.