We used high-throughput sequencing of short, cyclobutane pyrimidine dimer-containing ssDNA oligo generated during repair of UV-induced damage to study that process at both mechanistic and systemic levels in *Escherichia coli*. Numerous important insights on DNA repair were obtained, bringing clarity to the respective roles of UvrD helicase and Mfd translocase in repair of UV-induced damage. Mechanistically, experiments showed that the predominant role of UvrD in vivo is to unwind the excised 13-mer from dsDNA and that mutation of *uvrD* results in remarkable protection of that oligo from exonuclease activity as it remains hybridized to the dsDNA. Genome-wide analysis of the transcribed strand/nontranscribed strand (TS/NTS) repair ratio demonstrated that deletion of *mfd* globally shifts the distribution of TS/NTS ratios downward by a factor of about 2 on average for the most highly transcribed genes. Even for the least transcribed genes, Mfd played a role in preferential repair of the transcribed strand. On the other hand, mutation of *uvrD*, if anything, slightly pushed the distribution of TS/NTS ratios to higher ratios. These results indicate that Mfd is the transcription- repair-coupling factor whereas UvrD plays a role in excision repair by aiding the catalytic turnover of excision repair proteins.

Mfd | UvrD | transcription-coupled repair | XR-seq | mutagenesis

Significance

In transcription-coupled repair (TCR), nucleotide excision repair occurs most rapidly in the template strand of actively transcribed genes. TCR has been observed in a limited set of genes directly assayed in *Escherichia coli* cells. In vitro, Mfd translocase performs reactions necessary to mediate TCR: It removes RNA polymerase blocked by a template strand lesion and rapidly delivers repair enzymes to the lesion. This study applied excision repair sequencing methodology to map the location of repair sites in different *E. coli* strains. Results showed that Mfd-dependent TCR is widespread in the *E. coli* genome. Results with UvrD helicase demonstrated its role in basal repair, but no overall role in TCR.

Author contributions: O.A., A.S., and C.P.S. designed research; O.A. and C.P.S. performed research; J.H. contributed new reagents/analytic tools; O.A., Y.-Y.C., A.S., and C.P.S. analyzed data; and O.A., A.S., and C.P.S. wrote the paper.

Reviewers: J.W.R., Cornell University; and T.R.S., CNRS.

The authors declare no conflict of interest.

Data deposition: The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession no. GSE92734).

Ferely available online through the PNAS open access option.

1To whom correspondence may be addressed. Email: aziz.sancar@med.unc.edu or cselby@med.unc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700230114/-/DCSupplemental.
for the role of Mfd in TCR, some recent studies have implicated the transcription elongation factor NusA (21) and the replication and repair helicase UvrD (22) in transcription-coupled repair, and it has been suggested that Mfd-catalyzed TCR is one of several pathways for TCR in E. coli. Because these latter studies were based largely on genetic data and indirect readouts for TCR, we wished to determine the extent to which Mfd contributes to TCR in E. coli by using the eXcision repair-sequencing (XR-seq) method to map excision repair of the entire E. coli genome in strains with defined genetic mutations.

Results

XR-seq Method. Recently, we developed a method for isolating the oligonucleotides removed by excision repair in mammalian cells (23), and, using next generation sequencing (NGS) methods, we generated nucleotide resolution repair maps for UV- and cisplatin-induced DNA damage in human cells (24, 25). In this study, we adapted this method to analyze genome-wide repair, and thus genome-wide transcription-coupled repair in E. coli, and used various mutants to analyze the contributions of candidate proteins to TCR. The XR-seq method as applied to CPD repair in E. coli is shown schematically in Fig. 1. Briefly, cells are irradiated with UV, and, after incubation for a period for repair, cells are collected by centrifugation and small oligonucleotides carrying the excised CPDs are separated by the Hirt procedure and immunoprecipitated with anti-CPD antibodies to separate them from small oligomers released from the genome by nonspecific nucleases during sample processing. Then, a fraction of the isolated oligonucleotides are 3′ terminally labeled with 32P for visual analysis of the products, and the bulk are ligated with adapters, reimmunoprecipitated with the anti-CPD antibody, and subjected to photoreactivation with Anacystis nidulans photolyase to remove the photodimers, which is followed by PCR amplification and gel purification, and then the sequences of the excised oligomers are determined by NGS and aligned with the E. coli chromosome.

Excision Assay. Fig. 2 shows sequencing gel analysis of the end-labeled, excised oligomers. In preliminary experiments with WT cells, we discovered that the excised oligonucleotides were degraded rather rapidly. Therefore, we carried out time course experiments using both a WT strain and an E. coli strain, STL4150 (26), defective in all major ssDNA exonucleases (exoI, exoVII, recF). Fig. 2A (lanes 5 to 10) shows that, in the triple exonuclease mutant strain, the major species is a 10-mer whereas, in WT cells, it is a 13-mer (and 12-mer) (Fig. 2A, lanes 1–4), which shows that these three exonucleases play an important role in processing the excised oligomer and that, in the absence of these exonucleases, the excised oligomer is degraded to a 10-mer by 3′ to 5′ exonucleases that stop at a nucleotide 3′ to the photoproduct. We thus demonstrate that the 12- and 13-mer excision product generated by the purified UvrA, UvrB, and UvrC proteins (27) is of the same size as the product generated in WT cells in vivo and also provide an explanation for why, in the seminal papers describing nucleotide excision repair in E. coli cells, the thymine CPDs were found primarily in 4- to 6-nt-long oligomers, because the excised oligomer is rapidly degraded by the numerous ssDNA-specific exonucleases present in E. coli, in addition to the nucleases deleted in STL4150 (28).

In Fig. 2 B and C, we analyzed the excision products from nucleo-nuclease-deficient (STL4150) and WT (BW25113) E. coli strains mutated in genes implicated in various aspects of nucleotide excision repair. Mfd and UvrD have been proposed to play direct roles in TCR. Phr (photolyase) stimulates excision repair in the absence of transcription (29), Phr is inhibited by RNAP stalling at a CPD (30), and, finally, UvrA is known to be essential for all types of excision repair. The most striking feature of the results in Fig. 2 is the fact that, even though the uvrD mutation confers significantly reduced repair in vivo (31), in both Fig. 2B (STL4150 background) and Fig. 2C (BW25113 background), the excision product is, first, much more abundant in uvrD mutants than in all other mutants and is, second, almost exclusively 12 to 13 nt in length. This seemingly paradoxical result is in fact readily explained by the role of UvrD in nucleotide excision repair as established by in vitro experiments: After the dual incisions by UvrC in the UvrB–UvrC–DNA complex, the UvrB–UvrC heterodimer, along with the excised oligomer, remains bound to the duplex (no catalytic turnover), and addition of UvrD helicase initiates displacement of UvrB and UvrC, along with the excised oligomer, to enable the Uvr(A)BC excision nuclease to act catalytically (32–34) and at the same time makes the excised fragment available for degradation by ssDNA nucleases.

The results in Fig. 2 also show that phr cells excised at a level comparable with parental cells. A stimulatory effect of photolyase on excision has been demonstrated in vitro (29), but, in vivo, it has been seen only in repair-deficient and photolyase-overexpressing E. coli cells (35). Similarly, the results in Fig. 2B show no substantial loss in excision overall associated with mutation of mfd. Mfd enhances repair in vitro, but, in vivo, the mfd mutation confers only modest UV sensitivity in WT cells whereas mfd confers substantial sensitivity in recA cells (7).

XR-seq of CPDs in the E. coli Genome. It has been shown that the maximal TCR (ratio of TS/NTS repair) in the lac operon occurs at relatively early time points and that repair of both strands is nearly complete after ~30 min under conditions comparable with our repair assays (3). With this result in mind, we incubated STL4150 cells and mutant derivatives in the dark for 5 min after UV treatment and then harvested them for analysis of repair of CPDs by XR-seq. Two independent experiments gave results that were consistent with one another, with exceptions noted below. Fig. 3A shows that the reads from the uvrD– mutant were principally 12 to 13 nt in length, which is consistent with the sequencing gel analysis (Fig. 2B). The remaining reads are considered background. The
exoI, exoVII, recJ mutant cells excise the 13-mer slowly because turnover of UvrB and UvrC is slow. The 12-mer marker DNA shown in the images shows only the 25% most highly transcribed and 3 to 4 nt 3′ to 5′ end of the 10-mer stage. In STL4150 cells, there is limited degradation of the 13-mer past the 10-mer stage. In uvrD mutant cells (B and C), there is an elevated level of 13-mer product. The UvrD protein is the major helicase in E. coli. In nucleotide excision repair, UvrD catalyzes the displacement of the damage-containing 13-mer excision product and initiates displacement of the UvrB and UvrC proteins from the genome. Consequently, in these cells, the 13-mer remains annealed to the genome where it is resistant to nucleases. This accumulation of the 13-mer is observed even though uvrD mutant cells excise the 13-mer slowly because turnover of UvrB and UvrC is slow. The 12-mer marker DNA shown in the images contains a CPD and was end-labeled with polynucleotide kinase. The 50-mer (1 fmol) was included in each sample before end-labeling, as an internal control.

The greatest number of reads (about 5×10^7) was obtained from uvrD mutant cells, consistent with the strong signal in Fig. 2B. The background seems relatively small with uvrD cells because there was a stronger signal and less relative degradation with the uvrD cells. Reads obtained from the other strains were principally 10 or 13 nt (plus background), also consistent with results in Fig. 2B, and consistent with partial, processive 3′ to 5′ exonucleolytic degradation of the 13mer that stops at +1 from the photodimer and produces the 10mer. Sequence analysis revealed that TT was the predominant di-nucleotide at positions 8 to 9 from the 5′ end of the excised fragment for both the 12- to 13-nt class and the 10-nt class of captured oligomers (Fig. 3 B and C). Thus, these experiments revealed that CPDs are removed by incising 7 nt 5′ to 4 nt 3′ to the photodimer, in agreement with the in vitro experiments with purified Uvr(A)BC excision nuclease (27). We selected approximately 3 million 13-nt reads from each genotype for further analysis.

Genome-Wide Effects of Mfd, UvrD, and Phr Proteins on TCR. Previous in vitro work has shown that photolyase, when bound to a CPD, stimulates excision repair of the CPD (29) and that RNAP stalled at a CPD interferes with this excision repair stimulatory activity of photolyase (30). RNAP also inhibits excision repair (in the absence or presence of photolyase) when stalled at a CPD in the template (18). It was found that Mfd (TRCF) overcomes the inhibitory effect of stalled RNAP and, in fact, in combination with RNAP, enhances the rate of repair of the TS by a factor of 4 to 5 (6, 7). Similarly, another more recent in vitro study has concluded that UvrD helicase stimulates the repair of the TS independently of Mfd and that the UvrD protein may in fact be the primary TRCF in E. coli (22). Thus, taking these reports at face value, we expected that (i) mutation of mfd would somewhat reduce the magnitude of TCR, (ii) mutation of uvrD would drastically reduce TCR, and (iii) mutation of phr would amplify the TCR effect because of a loss of a factor that can stimulate excision repair in the NTS more than the TS because stalled RNAP interferes with the repair stimulatory effect of photolyase while promoting TCR mediated by Mfd.

With these expectations, then, we analyzed our XR-seq data in the form of histograms and scatter plots. An analysis of frequency distribution histograms for the four E. coli strains is shown in Fig. 4. For these analyses, 3 million reads for each genotype were aligned to the genome. Aligned reads were then ascribed to the TS or NTS of each annotated gene in the genome. Genes are plotted on the x axis based upon the log2 transformation of their TS/NTS repair ratios. In Fig. 4A, annotated genes were divided into quartiles (red, orange, green, blue) to denote the relative transcription of each quartile, going successively from lowest (red) to highest (blue) transcription. Fig. 4B shows only the 25% most highly transcribed genes. Transcription levels were obtained from the literature (36),
and transcript reads were obtained from cells growing exponentially in LB (OD_{600} = 0.4). In the XR-seq experiment, we also used exponentially growing cells (OD_{600} = 0.8). Of note, the published map for transcription (36) shows considerable antisense transcription, which, in addition to overlapping genes with opposite orientations, leads to more antisense transcripts than sense transcripts in many annotated genes. Restricting the analysis to genes with high ratios of TS/NTS transcription or high levels of transcription (Fig. 4B) focuses the analysis on the “simpler” genes with predominantly sense transcription.

Fig. 4 reveals several interesting points. First, as seen in Fig. 4B, in the parental strain, even though in the majority of cases the TS is repaired at a faster rate than the NTS, it is also apparent that, for a subgroup of genes, the NTS is repaired more efficiently in all genetic backgrounds (Dataset S1). Second, the phr mutation seems to have no effect on the ratio of TS/NTS repair compared with parental, presumably because of the small number (10 to 20) of photolyase molecules per cell (37), compared with 100 to 1,000 RNAP molecules per cell. Third, in the mfd mutant, the TS repair/NTS repair ratio is drastically reduced at all transcription levels (Fig. 4A), and the NTS becomes the preferentially repaired strand (P < 2.2e−16), consistent with inhibition of TS repair by RNAP, which remains stalled at transcription-blocking lesions in the absence of Mfd. In contrast to expectations, in the uvrD mutant, TCR was either amplified compared with parental cells (P = 0.002, Exp. 1) or was no different from parental cells (P = 0.8, Exp. 2) instead of being diminished.

Fig. 5A shows the scatter plots, in which the TCR for each annotated gene (having >30 TT sites on TS) is represented. The three plots in Fig. 5A compare the level of TCR (TS/NTS repair ratio) in each gene of the mutant strain with the level of the same gene in the parental strain.

The red line indicates where TCR is equivalent in the mutant and parental strains. Substantial effects are seen especially with the mfd mutation: In the mfd plot, the shift of data points to the lower right (P < 2.2e−16, both experiments) is consistent with relatively less template strand repair in mfd− cells, due to loss of Mfd-stimulated repair and inhibition of TS repair by stalled RNAP. Note that the overall shift of data points downward in the left half of the plot (parental TS/NTS < 0) indicates that genes with high relative NTS repair in the parental strain have even higher relative NTS repair in the mfd− strain. Thus, Mfd promotes TCR even in genes with more repair on the NTS.

In the uvrD mutant, the trend is different from the mfd mutant (Fig. 5A): The mean shift of data points to the upper left in the uvrD plot is significant (P = 8e−08) in Exp. 1, but not in Exp. 2 (P = 0.75). The modest trend in higher overall TCR in the uvrD mutant again supports the view that UvrD helicase does not couple transcription to repair overall but that, in fact, in its absence, the trend toward enhanced TCR becomes more prominent. In both experiments, data points from uvrD− cells are widely distributed around the red line, indicating a heterogeneous effect of UvrD as discussed below. For phr− cells, the data points are narrowly located around the red line (Fig. 5A), suggesting no effect of Phr on TCR.

Effect of Transcription Rate on Repair. To investigate the effect of transcription rate on repair, we plotted TS repair as a function of transcription levels, where levels of transcription are defined as the number of reads per kilobase (36). We observed a moderate but significant (P < 2e−16) correlation between transcription and TS repair in parental (rho = 0.36), phr (rho = 0.36), and uvrD (rho = 0.22) strains (Fig. 5B) (rho = 0.32, 0.36 and 0.12, respectively, in Exp. 2). Fig. 5B and C shows that transcription clusters into two levels, low-medium and high. Interestingly, the plots for parental, phr−, and uvrD− mutant cells in Fig. 5B show that data points for the high transcription level cluster of genes are mostly below the trend line, suggesting that, above a certain level, increasing transcription rate is not associated with increasing repair. The possibility of inhibition of template strand repair by a high transcription level has been discussed (13). In mfd− cells, there was no positive correlation between TS repair and transcription level. In fact, a mild (rho = −0.07) but significant (P = 2e−5) negative correlation was observed. Thus, inhibition of repair by stalled RNAP could be enhanced by additional stalled RNAPs upstream, and/or the extent of inhibition could be limited by the time it takes for RNAP to arrive at a lesion.

We further analyzed the data by plotting in Fig. 5C the ratios of mutant TCR/parental TCR as a function of transcription level. In the phr mutant, compared with WT, we did not see an effect of transcription rate on TCR. In contrast, in the mfd versus WT comparison, there was a strong correlation between the level of
transcription and the ratio of mfd−/parental TCR for low and medium abundance transcripts. Mfd is the only protein known to efficiently remove RNAP stalled at a lesion, and the stalled polymerase is known to inhibit repair. The data indicate that, in the absence of Mfd, up to a point, more transcription causes more repair inhibition. Finally, in comparing the uvrD− mutant to WT, we found that the variations in TS/NTS repair ratios do not depend on the level of transcription.

Analysis of TCR at Individual Gene Resolution. To gain further insight into TCR and the effects of various proteins on this repair mode, we illustrated the repair profiles of several genes in the form of screenshots, several of which are shown in Fig. 6. Fig. S1 shows repair profiles for each strain across the entire E. coli gene map. The screenshot in Fig. 6A shows a ribosomal RNA operon, which displays a very high level of transcription. Repair in this operon overall seems similar in parental and phr− cells although there is an increase at some repair sites in phr− cells (TS/NTS ratios in rrsB gene are 1.18 parental and 1.44 phr−). This operon illustrates, in mfd− cells, a dramatic reduction in TS repair (with some compensatory increase in rrsB NTS repair; TS/NTS is 0.06) and shows, in uvrD− cells, overall inhibition of repair of both strands while conserving TCR. This overall inhibition of repair suggests that, in parental cells, both strands are repaired rapidly as a “repair domain” (38). Notably, the elevated TCR ratio conserved in uvrD− cells (rrsB: 1.81) contributes to the heterogeneity in the effect of uvrD mutation on TCR compared with parental seen in Fig. 5A, uvrD panel. Fig. 6B illustrates a chemotaxis operon with a moderate level of transcription. Here, we saw a relatively small effect of the mfd mutation. As opposed to the rRNA operon, the rpoB gene in Fig. 6C displays an amplified TS repair in uvrD− mutant cells.

In addition to the genes in Fig. 6B and C, which exhibit TCR patterns generally in line with the genome-wide trend, we were interested in the significant number of genes in which the coding

Fig. 4. Frequency distribution of Log2-transformed TS/NTS repair in all annotated genes. (A) E. coli genes in four different strains colored by sense strand transcription levels going from lowest quartile RNA-seq count colored in red, to orange, to green, to the highest transcription quartile, in blue. Theoretically, the more weakly transcribed genes are more likely to exhibit repair profiles strongly influenced by antisense transcription and by repair hotspots. The means for each sample are 1.16 (Parental), 1.14 (phr−), 0.68 (mfd−), and 1.17 (uvrD−), and all of them are different from 0 based on one sample t test with P values <0.01. In Exp. 2, means for each sample were 1.09, 1.14, 0.68, and 1.04. (B) Top 25% most transcribed genes are plotted. Means for parental, phr, mfd, and uvrD cells are 1.41, 1.46, 0.53, and 1.61 for Exp. 1 (plotted) and 1.41, 1.46, 0.54, and 1.21 in Exp. 2, respectively. The vertical black line represents the border where TS repair level is equal to NTS repair.
(NTS) strand seems to be repaired more efficiently than the TS. Inspection of screenshots of a few representatives of this group and consideration of their transcription properties reveal that these genes may fall into one of two groups. In one group, there are a few very efficiently repaired hot spots in the NTS that dominate the repair landscape. In fact, when the TS repair versus NTS repair comparison is made, the rest of the gene repair is more efficient in the TS. In the second group are annotated genes with considerable levels of antisense transcription. In Fig. 6D, we illustrate antisense transcription in the insL1 gene. In the 3’ region, where there is antisense transcription, the mfd mutation seems to have no effect, as opposed to the 5’ end, where there is...
only sense strand transcription. In the same gene, we also saw a hotline on the NTS, which is illustrated in Fig. 6D, Right, by reploting the data in the Left panel on a lower sensitivity scale. The hotspot dominated the total count, resulting in a low TS/NTS repair ratio for this gene. As evident, in genes with simple transcription patterns, the TS is repaired more efficiently than the NTS, and this preferential repair is abolished or reversed in mfd mutant cells and may be amplified in uvrD mutant cells, in agreement with overall genome-wide analysis of TCR. Thus, taken in its totality, our data show that the Mfd protein is responsible for TCR throughout the genome.

Discussion

Genetic Determinants of TCR. Extensive functional and structural work has been carried out on RNAP, the Uvr proteins, and Mfd, which has provided considerable insight into the mechanistic aspects of TCR, culminating in analyses with single molecule assays that captured intermediates not detectable by ensemble experiments and that determined the rate constants for various steps and thus provided a quantitative explanation for rate enhancement seen in TCR (19).

However, some recent studies have led to suggestions that there are multiple pathways for TCR in *E. coli*. In one study, it was observed that...
reported that a temperature-sensitive mutant of transcription elongation factor NusA conferred upon \textit{E. coli} sensitivity to nitrofurazone and 4-nitroquinoline oxide, but not to UV radiation.

In addition, evidence was presented for an interaction between NusA and UvrA, and, based on these and other findings, it was proposed that NusA participates in a TCR pathway independent of Mfd (21). It was also shown that UvrD causes NAP to “back away” from a transcription-blocking lesion, exposing it to repair enzymes. Based largely upon an interaction identified between UvrD and UvrB (39, 40), and the UvrA-NusA interaction, it was suggested that UvrD and NusA function together in an Mfd-independent pathway. Furthermore, because \textit{uvrD} mutants are more sensitive to UV than \textit{mfd} mutants, it was proposed that the UvrD-mediated TCR was the major TCR pathway in \textit{E. coli} (22).

The data presented in this study do not support widespread UvrD-dependent TCR in \textit{E. coli} but do support a widespread role of Mfd in TCR.

Role of UvrD. Our data confirm the conclusion based on in vitro experiments (32–34) and CPD removal kinetics in vivo (31) that the role of UvrD in excision repair is to function as a helicase to displace the “excision” 12- to 13-nt-long oligomer carrying the damage along with the UvrB and UvrC proteins from the repair site. In the in vivo studies, the initial repair rates of WT and \textit{uvrD} mutant cells were identical. However, repair then slowed in \textit{uvrD}− but not WT cells. This finding was provided mechanistic explanation by in vitro experiments that revealed that, after dual incisions, the UvrB and UvrC proteins interact with the excised oligomer carrying the dimer remain bound to the duplex and that UvrD helicase displaces the excision repair proteins and releases the excised oligomer to enable UvrB and UvrC to enter new catalytic cycles. The results of the in vivo excision assay in wild type cells provide the strongest in vivo evidence for the proposed role of UvrD in nucleotide excision repair: We found that, although in WT cells and cells with \textit{phr} or \textit{mfd} mutations the excised oligomer is rapidly degraded to a 10-mer (and to smaller species not detectable by our 3′ labeling method), in \textit{uvrD} mutant cells, the excised mononucleotide retains its full size, consistent with being retained in the “excision gap” annealed to the genome and in complex with UvrB and UvrC proteins. The helicase function of UvrD explains the property of the \textit{uvrD} mutant with regard to its overall effect on TCR: \textit{uvrD} mutation does not diminish the genome-wide preferential repair of the TS because, after TCR, the UvrB–UvrC complex remains associated with the excised oligomer in the repair patch in the transcribed strand. The lack of turnover of these proteins results in proportionally less repair in the NTS compared with the WT strain.

The lack of UvrB–UvrC turnover produced another, more subtle, unexpected effect of UvrD. Anecdotally, we found that enhanced strand-specific repair carries over to enhanced repair of the NTS. This “domain”-level repair has been discussed as it relates to the phenomenon in mammalian cells (38). An example of this type of repair is illustrated by the screenshot of the highly transcribed rRNA operon in Fig. 6A. In this case, the overall repair of both strands of the operon is reduced in \textit{uvrD}− cells although an elevated TCR signal (as TS repair/NTS repair) is still seen. Two factors may contribute to this effect: the accumulation of a high concentration of repair enzymes to actively transcribed genes by the high affinity of the Mfd intermediate to UvrA–UvrB, and the turnover of the repair subunits, which are the limiting factors in global repair. Consistent with this interpretation, in the absence of UvrD and Uvr protein turnover, there are fewer highly and fewer weakly repaired genes: That is, repair across the genome is at a more even level, which is reflected in the relatively narrow distribution of TCR levels in the distribution plot of \textit{uvrD}− cells (Fig. 4) and the gene repair maps (Dataset S1). By the same reasoning, the level of coding strand repair in \textit{mfd}− cells should be reduced. However, Fig. 6A shows substantial coding strand repair in \textit{mfd}− cells, which is likely compensatory, due to the low template strand repair and due to the use of the same total number of reads for each strain in this genome-wide analysis.

Another interesting aspect of the role of UvrD is shown by the distribution of data points about the red line in Fig. 5A, \textit{uvrD} panel. As described earlier, a predominance of points above and to the left of the line is evidence for an anticooperative effect of UvrD. Furthermore, unlike \textit{phr}− cells, and similar to \textit{mfd}− cells, \textit{uvrD}− cells demonstrate a wide distribution of data points around the red line, indicating that UvrD influences TCR differently in different genes. One reason for this observation may be the “evening out” effect of the \textit{uvrD} mutation on repair mentioned above. In addition, as the major helicase in \textit{E. coli}, UvrD is involved in numerous DNA transactions, including replication and repair pathways, and the absence of UvrD may be expected to influence localization of TCR as a secondary effect of disrupting other ongoing DNA metabolic processes.

Factors Influencing TCR. To date, TCR, as TS/NTS repair ratios, has been measured in a number of systems, TCR ratios from in vitro studies, each using a different transcriptional unit, ranged from around 2 to 4 (6, 7, 39). Another in vitro study found an approximately threefold more rapid rate of repair of a template strand lesion in the presence versus the absence of NAP and Nud (19). In vivo, the TCR value for a region including most of the lac operon, at early time points, appeared to be over 4 (3). Also in vivo, a mutagenesis study of a region of the \textit{lacI} gene suggested a high ratio of TS/NTS repair in the region studied (41). In contrast, our measurements of overall repair yielded mean values of 1.09 and 1.16 in parental cells measured in two experiments. The distribution of TCR covered a wide range (Fig. 4) and included numerous genes with TCR ratios in the 2 to 4 range and above; however, these represent a minority of the genes. The high levels of TCR that have been reported may reflect a number of factors. For one, the ratio of TS sites in the template/coding strand of annotated genes in \textit{E. coli} is 1.3. Our data have been corrected to reflect repair per strand per TT per strand, which effectively lowers the TS/NTS repair ratio; however, this correction was not made in the other studies cited. Another possible source of bias in some of the studies cited is the use of simple transcription units and defined in vitro conditions that enable TCR experiments. In reality, in vivo, simple transcription units may be the exception. The widespread occurrence of antisense transcription (36) and ongoing DNA metabolism are complicating factors that may limit the overall occurrence of TCR in vivo. Other uncharacterized factors, such as DNA binding proteins (13), may also limit TCR. The overall level of global repair is expected to have a dampening effect on the TCR signal; this dampening effect is illustrated in mammalian cells by the greatly enhanced TCR signal in XPC cells, which lack global repair, compared with WT cells (25). By chance, there may be greater global repair in the NTS in \textit{E. coli} cells. Technical factors may also impede our full assessment of TCR in vivo. These factors include the use of strains with different genetic backgrounds for measurements of transcription and repair, and alterations to gene expression induced by UV (42), which were not taken into account in the transcription measurements. Further experimentation and in-depth analyses are needed to clarify how the complex circumstances in vivo influence repair. It is worth noting that the TS/NTS repair ratio decreased overall by a factor of 1.71 in \textit{mfd}− cells compared with parental cells (Figs. 4 and 5A and B), and as noted above, the Mfd contribution to TCR was widespread among genes.

Our global repair data also reveal heterogeneity in TCR at individual sites within a given transcriptional unit. This heterogeneity could explain why a small region of the induced \textit{lac} operon exhibited weak TCR (43) whereas a larger region containing the same sequences exhibited strong TCR after induction (3).

Model for TCR in \textit{E. coli}. Fig. 7 shows an updated model for TCR in light of research on Mfd, including a recent kinetic study (19) and
findings presented in this paper: RNAP stalls at damage sites in the template strand, and the stalled complex recruits Mfd at a relatively fast rate. Mfd, by virtue of its translocase action, releases the nascent transcript and dissociates RNAP from the template.

RNA remains tethered to the Mfd-DNA complex, in which Mfd assumes a configuration that recruits UvrA₁₂₅ by binding to UvrA at about a 20- to 200-fold faster rate than the direct recruitment of UvrA₁₂₅ to sites of damage (global repair). This recruitment is coupled with the loading of UvrB onto the transcription-blocking damage and release of RNA (RNA, Mfd, and UvrA), which subsequently dissociate to components of the UvrA complex. Then, the absence of photolyase leads to more prominent on the NTS because TS lesions undergo TCR. The purple-shaded pathway is blocked in the absence of UvrD, and UvrBC complex doesn’t turn over.

Materials and Methods

Strains used in this study are listed in Table S1. PCR analyses were performed to confirm the gene deletions generated in MfdK33, UvrDK33, and PhrK33. PCR analyses were performed to confirm the gene deletions generated in MfdK33, UvrDK33, and PhrK33.

Excision Assays. Overnight cultures were diluted 1/15 to 1/20 into nonselective LB medium and grown with shaking at 37 °C. Cells were transferred to R150 tissue culture dishes in volumes of 10 mL (Fig. 2A and B) or 15 mL (Fig. 2C) and were irradiated at an OD₅₉₀ of ~0.8 at room temperature with 100 J/m² (Fig. 2A and B) or 120 J/m² (Fig. 2C). Dishes were then transferred to 37 °C for the times indicated in Fig. 2A, or for 5 min (Fig. 2B and C). Cells were then harvested, chilled, and maintained on ice. Cells were pelleted at 4 °C, resuspended in ice-cold Tris (10 mM)-EDTA (1 mM) (pH 8.0), transferred to ice-cold Eppendorf tubes, and pelleted at 4 °C, and the supernatants were removed. Pellets were resuspended with an equal volume of 1 M Tris (100 mM) (pH 7.5), 42 μL of room temperature 10% (wt/vol) SDS was added, and tubes were gently mixed and then incubated at room temperature for 20 to 25 min. A 100- to 105-μL volume of room temperature NaCl (5 M) was added, tubes were gently mixed, and suspensions were incubated at 4 °C overnight. The larger volumes of SDS and NaCl were used when 15 mL of cells was irradiated, and smaller volumes were used when 10 mL was irradiated. After centrifuging at high speed for 1 h in a microfuge at 4 °C, supernatants (about 380 μL) were taken, and each was incubated with 12 μL of RNaseA (R4642; Sigma) for 1 h at 37 °C, and then with 12 μL of proteinase K (P81075; NEB) for 1.5 h at 60 °C. Samples were then extracted twice with phenol/chloroform/isoamyl alcohol and precipitated with ethanol. Samples were immunoprecipitated with an anti-CPD antibody and washed as described (23), except wash buffer III contained 0.25 M LiCl. Extraction, precipitation, and labeling of the 3' ends with endo-Conf using as described (23), except labeling was for 2 to 3 h. Samples were then extracted with phenol/chloroform/isoamyl alcohol and precipitated with ethanol and resolved with a 16% (wt/vol) polyacrylamide sequencing gel. We note that the IRT procedure removes UvrB and UvrC that remain associated with DNA after dual incision and thus causes release of the excised oligo from genomic DNA.

XR-seq Library Preparation. We used StL4150 cells as the parental “wild-type” background strain, and StL4150 derivatives MfdK33 (mfd), UvrDK33 (uvrD), and PhrK33 (phr). Cultures were inoculated as above, and cells were grown in nonselective LB medium at 37 °C with shaking and irradiated at an OD₅₉₀ of ~0.8 in 15-mL volumes in R150 tissue culture dishes with 120 J/m² UVC (254 nm) at room temperature. At the dose rate used, irradiations lasted about 2 min. Dishes were then transferred to 37 °C incubators for a 5-min incubation and then were harvested and extracted by the Hirt procedure as described (23). For each cell line, 240 to 320 mL of cells were processed in this manner. Thus, amounts were scaled up around 20-fold compared with excision assays. Compared with excision assays, immunoprecipitations were scaled up 2.5-fold; thus, 12.5 μL of each resin (protein G and anti-rabbit dynabeads) and 2.5 μL of each antibody (anti-CPD and rabbit anti-mouse) were used for each cell line. Immunoprecipitation and harvesting of DNA was as above. The DNAs were then ligated to adaptors as described (25), and the immunoprecipitation was repeated. CPDs were then repaired with ~400 nM of A. nidulans photolyase-MBP fusion protein and subjected to analysis to determine the minimum number of cycles needed for preparative scale amplification. The number of cycles used for preparative scale PCR was 15 (StL4150, MfdK33, PhrK33) and 13 (UvrDK33). Products were gel-purified as described (25), and
DNA was eluted from gel slices by shaking at room temperature overnight in 300 μl of buffer (10 mM Tris, pH 8, 1 mM EDTA, 300 mM NaCl), followed by a second elution with 150 μl of the same buffer for 3 to 4 h. Pooled DNA was collected by precipitation, resuspended, and quantitated as described (25).

Sequencing and Analyses

The WT sample was sequenced on a MiSeq platform, and the other three were sequenced in one HiSeq 2500 lane together with a set of STL4150, MfdK33, UVrc33 samples generated by repeating the entire experiment. Preparative PCR of this second set used 12 (UVrDK33) and 14 (STL4150, MfdK33, PhrK33) cycles. Reads were trimmed to remove flanking adapter sequences by cutadapt version 1.10 (44). Only the reads of 13-mer length were analyzed. We randomly sampled 2.9 million reads from each sample using python random module with the seed number 123. The reads were aligned to the E. coli str. K-12 sub. MG1655 genome [National Center for Biotechnology Information (NCBI) assembly accession no. NC_000913.2] by using bowtie (45) with the arguments -polongm, -phred33-quals, and -seed 123. For the less stringent alignment method, which was used to produce the screenshots, we added the arguments -all, -strata, and -best. Nucleotide distribution of the reads was obtained using bedtools (46), coupled by custom scripts. The reads having TT dinucleotide at the positions of 8 and 9 were used for further analysis. The alignment was separated between strands by using custom scripts. The gene intervals were retrieved from an NCBI genome annotation file and converted to bed format with custom scripts. Also, genes with <30 TT dinucleotides in the T5s were omitted, and the number of reads per each strand per annotated gene was normalized to the number of TT dinucleotides per strand per annotated gene. The strand-specific repair signal for genes was computed with bedtools (46). The sequence data have been deposited in the Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession no. GSE92734).

RNA-seq Data Analysis

We used a publicly available RNA-seq dataset (36). We trimmed nonqualified sequences by using fastq-quality-trimmer from FASTX-Toolkit with the arguments -t 20 and -Q 33. We removed the poly-A tails and retrieved reads having at least 12 nt by using cutadapt version 1.10 (44) with the arguments –a(A100) and --minimum-length 12. We aligned the reads to the same reference genome (NC_000913.2) by using tophat (47) with the argument –library-type fr-firststrand. The aligned reads were separated by strand.

Visualization and Statistics

Genomic distributions of the XR-seq and RNA-seq reads were visualized and explored using Integrative Genomics Viewer (48). Quantitative plots and data transformations were processed using R. The paired t test was used to test whether the means of two samples were different. Spearman’s rank correlation was used to measure the correlation between the repair ratios and transcription levels of the genes.

ACKNOWLEDGMENTS

Strains were provided by Dr. V. Burdett (Dr. P. Modrich laboratory, Duke University) and by the E. coli Genetic Resources at the Yale Coli Genetic Stock Center (CGSC). We thank Dr. Roel Schaaper for useful comments.