Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin

Wenyue Guan,a,b Romain Guyotb Jacques Samarutb Frédéric Flamantb Jiemin Wonga,1 and Karine Cécile Gauthierb1

aShanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; and bInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France

Edited by Jan-Åke Gustafsson, University of Houston, Houston, Texas, and approved June 20, 2017 (received for review February 8, 2017)

Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily that act as ligand-dependent transcription factors. Here we identified the ten-eleven translocation protein 3 (TET3) as a TR interacting protein increasing cell sensitivity to T3. The interaction between TET3 and TRs is independent of TET3 catalytic activity and specifically allows the stabilization of TRs on chromatin. We provide evidence that TET3 is required for TR stability, efficient binding of target genes, and transcriptional activation. Interestingly, the differential ability of different TRα1 mutants to interact with TET3 might explain their differential dominant activity in patients carrying TR germline mutations. So this study evidences a mode of action for TET3 as a nonclassical coregulator of TRs, modulating its stability and access to chromatin, rather than its intrinsic transcriptional activity. This regulatory function might be more general toward nuclear receptors. Indeed, TET3 interacts with different members of the superfamily and also enhances their association to chromatin.

Results

TET Proteins Interact with TR. To determine epigenetic modifiers involved in modulating TR activity, the interactions between the recombinant TRα1 or TRβ1 fused to GST (GST-TRα1 or GST-TRβ1), and around 50 epigenetic modification enzymes were tested by in vitro pull down, followed by coimmunoprecipitation assay. The NCoR corepressor and SRC3 coactivator were found to interact with both GST-TRα1 and GST-TRβ1 validating the screen. Other factors such as histone lysine methyltransferase SUV39H1 and histone deacetylase HDAC1 that are known to be coregulators of other nuclear receptors were also identified (8).

TET3 was an interactor that came out of the screen (Fig. 1 A). Coimmunoprecipitation assays were performed for all three TETs to test whether the interaction with TRs can take place in HEK293T cells. As TETs are large proteins that are difficult to produce, only their catalytic domains were used as a first intention. The catalytic domain of TET3 interacted with TRα1 to a

Significance

Thyroid hormone (T3) controls both developmental and physiological processes. Its nuclear receptors (TR) are transcription factors. Methyl dioxygenase ten-eleven translocation protein 3 (TET3) is characterized here as a TR coregulator. It stabilizes and promotes TR chromatin association in a dioxygenase-independent manner, thus increasing the sensitivity of the cell to T3. Mutations in TR cause the resistance to thyroid hormone syndrome (RTH) symptoms, the severity of which varies with the particular mutation. Only some mutated TR can be stabilized by TET3. The availability of TET3 is therefore a parameter modulating TR activity, and its differential interaction with mutated TR might explain different severity of RTH. Furthermore, TET3 is likely to function as a general coregulator for nuclear receptors, as it enhances chromatin association of additional members of this superfamily.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: karine.gauthier@ens-lyon.fr or jmeng@bio.ecnu.edu.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702192114/-/DCSupplemental.
similar level as the interaction between SRC3 and liganded TRα1 (Fig. 1B). The interaction with full-length TET3 was also validated by coimmunoprecipitation (Fig. 1C). In contrast to T3-induced TRα1-SRC3 interaction, T3 reduced the interaction between TRα1 and TET3 in HEK293T cells, but not in the pull-down assay. This suggests TET3 can interact with both the apo-and holo-conformations of TR, but that in a cell environment and in the presence of T3, this interaction is somehow balanced and displaced by the present “classical” coactivators. Similarly, we found that TRβ1 interacts with TET3 (Fig. S1A). Furthermore, initially attempted as controls, we observed that TET3 also interacts with two other nuclear receptors: the constitutive activator estrogen-related receptor (ERRα) (Fig. 1D) and the androgen receptor (AR) (Fig. 1E). In both cases, the interaction was modulated by ligands, respectively increased by the antagonist XCT790, and decreased by the agonist R1881. As the interaction with the catalytic domain of TET1 and TET2 was considerably weaker (Fig. 1B), the rest of the study was limited to TET3.

TET3 and TRα1 Interact Mainly via the Catalytic Domain of TET3 and the AF2 Domain in TRα1. To further characterize the interaction between TET3 and TRs, a series of vectors was generated to express tagged and truncated TET3 (Flag) or TRα1 (Flag) (Fig. 2A). Coimmunoprecipitations showed that TRα1 interacted strongly with the catalytic domain of TET3 (TET3-Cat), weakly with the CXXC domain, and not with the N-terminal portion of TET3 (TET3N) (Fig. 2B). Further dissection of TET3-Cat showed that TRα1 strongly interacts with both the N-terminal half (TET3CatN) and C-terminal half (TET3CatC) of the catalytic domain (Fig. 2B). When structured domains within TET3Cat were analyzed, DSH2 conferred the most robust interaction (Fig. 2C). Mutation of the only putative LXXLL, a sequence that is frequently present in the interaction domain of NR cofactors, in this domain reduced but did not abolish the interaction (Fig. 2C). Conversely, the presence of the C-terminal helix12, commonly called AF2, of the ligand binding domain of TRα1 was found to be necessary for interaction with TET3 (Fig. 2D).

TET3 Modulates T3 Response and Regulates TRα1 Protein Levels. After identifying the interaction between TET3 and TRα1, we evaluated whether TET3 affected TRα1 activity. We first examined the effect of TET3 expression on TRα1 transcription capacity in a transient expression assay performed in HEK293T cells. Full-length TET3 enhanced TRα1 transcriptional activity in a dose-dependent manner, whereas a TET3N mutant that cannot interact with TR failed to do so (Fig. 3A). The catalytic activity was not required for this effect, as demonstrated by using the TET3 mutant (TET3mut) (Fig. 3B) that lacks the dioxygenase activity (Fig. S2A), but retains the ability to interact with TRα1 (Fig. S2B).

Fig. 1. TET3 interacts with NR. (A) Interaction between TET3 and TR. GST pull-down assays were performed using recombinant GST-TET3 or GST-TRα1 proteins and lysates from HEK293T cells overexpressing TET3, SRC3, NcoR, SUV39h1, or HDAC1 in the presence or absence of T3 (5.10^{-7} M). (B) Interaction between TETs-Cat and TRα1. HEK293T cells expressing indicated proteins were precipitated with M280 beads. Coprecipitated F-TET3 mutants were detected using an anti-Flag antibody. (C) T3 effect on TET3-TRα1 interaction. Myc-TET3 and GFP-TRα1 were transfected in HEK293T cells and immunoprecipitated using an anti-Myc antibody. Coimmunoprecipitated GFP-TRα1 was detected using anti-GFP antibody. (D and E) Effects of XCT790 (antagonist) or R1881 (agonist) on ERα(AR)/TET3Cat interactions. HEK293T cells were transfected with indicated plasmids, Flag beads were used to precipitate Flag-ERαFlag-AR, coimmunoprecipitated Myc-TET3-Cat was detected using anti-Myc antibody.

Fig. 2. The catalytic domain of TET3 and the AF2 domain of TRα1 confer the interaction between these two proteins. (A) Schematic representation and summary of interactions of full-length and truncation mutants of TET3 and TRα1. AF2, activation function domain 2; Cat, catalytic domain; CRD, cysteine-rich domain; CXXC, CXXC domain; DSH2, double-stranded beta-helix domain; DBD, DNA binding domain; LBD, ligand binding domain. “+” more, “++” and “++++” represent, respectively, interaction, stronger interaction, and no interaction. (B and C) Characterization of the interacting regions in TET3 with TRα1. Whole-cell extracts were prepared from HEK293T cells expressing indicated proteins. (B) GST-TRα1 was precipitated with M280 beads; coprecipitated F-TET3 mutants were detected using anti-Flag antibody. Asterisk indicates bands for TRα1 that are recognized thanks to the cross-reaction between anti-Flag antibody and its GST tag. (C) Flag beads were used to precipitate TET3 truncation mutants; coimmunoprecipitated TRα1 was detected with anti-Flag antibody. (D) Characterization of the interacting regions in TRα1 with TET3. Flag beads were used to precipitate TRα1 truncation mutants; coimmunoprecipitated TET3 was detected with anti-Myc antibody.
TET3 regulates TRα cells. Expressions of TREs and Klf9, Dbpα by siRNA (Fig. S2). To further stabilize TRα protein level. (A) TET3 regulates TRα protein level. (B) TR target gene expression is regulated by TET3 levels in C17.2α cells. Expressions of TRα target genes in indicated cells treated or not with T3 (10−8 M) were examined by relative qRT-PCR. Relative induction triggered by T3 in each cell line was presented. (B) TRα chromatin enrichment to the same region of indicated genes. Results are presented as percentage of input.

Then we moved to cellular systems to look at the regulation of endogenous target genes. We used a neural stem cell line, namely, C17.2αSα, in which a murine GS-tagged TRα is stably expressed and TRα target genes have been fully identified (9). RT-PCR analyses revealed that these cells express endogenous TET3 at higher level than TET1 and TET2 (Fig. S3), but we failed to detect TET3 proteins by Western blotting, using commercial TET3 antibodies. To investigate the potential role of TET3 in TRα transcriptional regulation, we used the CRISPR/Cas9 technology to knockout both copies of the TET3 gene, in equivalent cells, called C17.2αSα, expressing a streptavidin-binding protein (SBP)-tagged TRα protein. A cell clone was identified (C17.2αSαKO) with frameshift mutations on both alleles (Fig. S4A). The absence of TET3 expression in this clone was confirmed by qRT-PCR (Fig. S4B). A cell clone without TET3 mutation and with a comparable level of TRα expression (Fig. S4B) served as a control cell line (C17.2αSαC) in the following experiments. TET3 KO led to a decreased induction by T3 of all TR target genes (Fig. 3B). The sensitivity to the KO ranged from high (Epas1, Slc43a2, Tgm2) to low (Klf9, Phospho1, Adcy9). Importantly, TET3 KO severely compromised the level of SBP-TRα protein (Fig. 3C, Left), even though more SBP-TRα transcript was detected in C17.2αSαKO than in C17.2αSαC (Fig. S4B). To rule out potential off-target effects of CRISPR/Cas9, we knocked down TET3 in C17.2αSα by siRNA and observed that siRNA-based TET3 knockdown (Fig. S3) also resulted in substantial reduction of GS-TRα proteins (Fig. 3C, Right). Consistent with reduced TRα proteins after TET3 knockout, chromatin affinity precipitation assay (ChAP) revealed that TRα recruitment to several of its TREs is severely impaired in C17.2αSαKO (Fig. 3D). The destabilization of TRα in C17.2αSαKO is most likely the direct consequence of TET3 KO, as TRα protein level (Fig. S4C) and T3 induction of target genes (Epas1, Phospho1, and Adcy9) (Fig. S4D) were partially rescued after reintroduction of TET3 by lentiviral infection. The rescue is only partial, as less than 30% of the cells could be transduced by the lentivirus vector (Fig. S4E). These results indicate TET3 plays a critical role in regulating TRα transcriptional activity. Furthermore, these results reveal a function for TET3 in modulating TRα protein level.

TET3 Stabilizes TRα by Inhibiting Their Ubiquitination. To further evaluate the ability of TET3 to regulate TRα protein level, we examined the effect of TET3 on TRα protein stability in transfected HEK293T cells by adding cycloheximide (CHX), an inhibitor of protein translation. As expected, the protein level of TRα1 and TRα1ΔH12, a mutant with deletion of helix12, which corresponds to the AF2 domain, quickly decreased over time on addition of CHX. Coexpression of TET3 reduced the degradation of TRα1, but not TRα1ΔH12, with which TET3 cannot interact (Fig. 4A). Similarly, coexpression of TET3 enhanced the stability of TRα1 (Fig. S1B). TET3mut retains its capacity to stabilize TRα1 protein (Fig. S2C). These results show that TET3 regulates TRα protein stability and that this stabilization requires the direct interaction between the two proteins, but not the enzymatic activity of TET3.

As TRα is degraded via the ubiquitin-mediated proteasome, we then examined whether the overexpression of TET3 could modify the ubiquitination pattern of TRα. Ubiquitin-dependent degradation can be prevented by a mixture of MG132 and E64D inhibiting, respectively, the proteasome per se and the lysosome-mediated degradation of ubiquitinated proteins that might occur when proteasome is blocked. As expected, this resulted in an accumulation of polyubiquitinated TRα1 in transfected HEK293T cells (Fig. 4B). Importantly, coexpression of TET3 limited the amount of polyubiquitinated TRα1 (Fig. 4B), and this effect was independent of TET3 enzymatic activity (Fig. S2D). Furthermore a similar blockade of degradation could prevent the decrease of TRα1 protein level triggered by TET3 knockdown in C17.2αSα (Fig. 4C). Similarly, TET3 also inhibited TRα1 ubiquitination (Fig. S1C). Altogether, these results suggest TET3 protects TRα from degradation by limiting its polyubiquitination; this effect is independent of TET3 enzymatic activity.

Because T3 attenuates TET3/TRα1 interaction, as demonstrated by coimmunoprecipitation, we tested whether TET3 stabilizes TRα in the presence of T3. In agreement with published results (5), we observed that T3 accelerates the degradation of TRα1 in transfected HEK293T cells (Fig. 4D). In this system, however, TET3 extended the half-life of TRα1 in both the absence and the presence of T3 (Fig. 4D), implying TET3 stabilizes TRα even in the presence of T3.

TET3 Stabilizes TRα in the Chromatin Fraction. We next evaluated the possibility that TET3 may influence TRα subcellular localization and/or chromatin association. Immunofluorescent staining showed that TET3 and TRα are both nuclear proteins, and their coexpression has no obvious effect on nuclear localization (Fig. S5). Biochemical fractionation of transfected HEK293T cells confirmed that TRα1 is mainly recovered in the nucleus, but only a subfraction is chromatin associated (Fig. 5A). Coexpression of TET3 substantially increased the chromatin fraction of TRα1, but not cytosol and nuclear TRα1 (Fig. 5A). This effect requires direct interaction, as increased chromatin fraction was not observed for TET3mut (Fig. 5A). In addition, TET3N, a truncated form of TET3 that does not interact with TRα, could not promote TRα1 enrichment in the chromatin (Fig. S2E). In contrast, TET3mut enhanced TRα1 chromatin enrichment to the same extent as the wild-type TET3 (Fig. S2E). Similarly, both ERRα and
AR that interact with TET3 showed an increased presence on chromatin with TET3 coexpression (Fig. 5B). Strikingly, even though TRα1 and TET3 were strongly coexpressed in both nucleus and chromatin, the stabilization effect measured after CHX treatment for indicated periods of time was only observed in the chromatin fraction (Fig. 5C). These results argue for a stabilization of TRα1 on the chromatin via its interaction with TET3. Similarly, TET3 also substantially enhanced TRα1 chromatin association (Fig. S1D). Thus, TET3 has a marked effect in enhancing TR chromatin association and protecting chromatin-associated TRs from ubiquitination-mediated degradation.

The Potential Role of TET3 in Modulating the Dominant-Negative Effect of TR Mutants. One situation in which TET3/TR interaction may have significant consequences is in patients with RTH. The nonsense or frameshift mutations found in these patients, often located in the AF2 domain of TR, confer dominant-negative properties toward the wild-type receptor. This can be evidenced in transient expression assays, where the coexpression of mutant and WT TRα1 results in impaired transactivation capacity, mimicking the situation found in cells of heterozygous patients (10). The dominant-negative effect varies with the type of mutation. The mechanisms responsible for wide spectrum of dominant-negative action are not entirely clear, and probably involve mutant protein stability and balance between corepressor and coactivator interactions. Because TET3 interacts with and stabilizes TR in a helix12-dependent manner, we tested the possibility that the interaction of the mutant receptors with TET3 could determine the stoichiometry between mutant and WT receptors, and thus influence the dominant-negative activity of the mutant receptors, and consequently the disease severity.

We used here a panel of natural and artificial mutations altering helix12 (Fig. 6A) and assess both the influence of the mutation on TET3 interaction and dominant-negative property. TRα1ΔH12(11) and TRα1N359Y(12) have been found in two patients, and TRα1ΔH12 is lethal in a mouse knock-in model (13). As expected TET3 interacts with TRα1ΔH12, but not TRα1E403X; interacted with TET3-Cat (Fig. 6B) because helix12 is required for TET3/TRα interaction. As a consequence, TET3 stabilized TRα1ΔH12 (Fig. 6C), but not TRα1E403X (Fig. 6D), and increased the presence of TRα1ΔH12, but not TRα1E403X on chromatin (Fig. S6). Transfections were performed to test whether the ability to interact with, and thus be stabilized by, TET3 of TRα1ΔH12, but not TRα1E403X, affect their dominant-negative activity. As expected, increasing the mutant/WT receptor ratio decreased TR activity for both TRα1ΔH12 and TRα1E403X (Fig. 6E). However, coexpression of a fixed amount of TET3 strongly attenuates the dominant-negative potential of TRα1ΔH12, but not TRα1E403X, as illustrated by the changes in the slopes (Fig. 6F). A simple explanation would be
that TET3 stabilizes TRα1 and TRα1L400R, but not TRα1E403X, and thus influences the stoichiometry and the capacity of the cells to respond to T3, as illustrated on the scheme (Fig. 6F).

Discussion

In this study, we demonstrate that TET3 proteins can interact with four nuclear receptors: TRα1, TRβ1, AR, and ERRα. Focusing on TET3/TRs interaction, we found that the presence of TET3 has three consequences: it increases the half-life of TRs by reducing ubiquitination and degradation, it stabilizes TRs presence on chromatin, and it increases TRα1 capacity to mediate transcriptional activation on ligand binding. These three effects do not rely on the catalytic activity of TET3, thus revealing a DNA demethylation-independent function for TET3, as well as a mode of regulation for TRs. In addition, we observed that TET1 and TET2 also interact with TR, even though interactions with them are weaker than with TET3. However, given the sequence similarities, TET1 and TET2 might also modulate TR function in a similar manner. Proper experiments are needed to ascertain this hypothesis. The interaction with additional nuclear receptors such as AR and ERRα also suggests TET3, and potentially TET1 and TET2, may have a broad regulatory role in the function of nuclear receptors.

Although the initial in vitro pulldown assay suggests a weak protein–protein interaction between TR and TET3 (Fig. L4), subsequent coimmunoprecipitation (co-IP) experiments reveal an interaction that is comparable to or even stronger than that with the classical coactivator SRC3 (Figs. L8 and 2C). The observed robust interaction may be explained by the presence of multiple nuclear receptor interaction regions in TET3 regions (CXXC, CatN, and CatC) that can interact with TRα1 independently in co-IP assay (Fig. 2). It is noteworthy that TET3 stabilizes and enhances TRα1 chromatin association in a TET3-TRα1 interaction-dependent manner (Figs. 4 and 5). Thus, the striking reduction of TRα1 protein, but not transcript levels, on TET3 knockdown or knockout (Fig. 3C) nicely manifests the physiological relevance and function significance of this interaction. In support of this notion, TET3 KO in C172 markedly impairs the binding of TRα1 to three previously described TRE (9) in the Epas1, Klf9, and Dbp promoters (Fig. 3D).

We noted that the interaction between TET3 and TR is ligand-independent in vitro (Fig. L4) and reduced in T3-treated cells (Fig. 1B and C and Fig. SL4). The reduced interaction observed in T3-treated cells is likely a consequence of competition from other proteins (coactivators) that are able to interact with TR in a T3-dependent manner and displace TET3. Nevertheless, even weaker interaction is likely functionally relevant, as TET3 stabilizes TR even in presence of T3. This T3-dependent competition may also allow a switch of TR interacting partners from TET3 to coactivators, activation of the target genes, and recycling of the receptor via its degradation.

A surprising finding in our study is that the stabilization of TR by TET3 is limited to the chromatin compartment (Fig. 5), even though TET3 and TR interact (co-IP) and colocalize in the soluble fraction of the nucleus. At this stage, the underlying mechanism is not known, but presumably involves enhanced recruitment of TR to chromatin by TET3 and/or protection of chromatin-associated TR from ubiquitination and subsequent degradation. Our ChAP assay clearly demonstrated that TET3 is required for efficient binding of TRα1 to TRE in TR target genes (Fig. 3), although it remains to be determined whether TET3 enhances TRα1-specific enrichment at TRE and/or other genomic sites. In an effort to decipher the underlying mechanism, we demonstrated that the CXXC domain, which mediates TET3 direct binding of genomic DNA (14), is dispensable for stabilization of TRα1 recruitment in chromatin (Fig. S7A). In addition, we demonstrated that TET3 stabilized and promoted chromatin association of a TRα1 mutant (TRα1N359Y) defective in DNA binding (15) as a result of a mutation in DNA binding domain (Fig. S7B). This TR mutant, as expected, maintained an interaction with TET3 (Fig. S7C). Thus, our data indicate that stabilization of chromatin-associated TRα1 by TET3 depends neither on TRα1’s nor on TET3’s DNA-binding activity, but on the interaction between TET3 and TR. Future work is needed to elucidate the detailed mechanism by which TET3 selectively stabilizes chromatin-associated TR.

In the present study, we reveal a role of TET3 on transcriptional regulation by nuclear receptors that does not rely on its catalytic activity. As anticipated from their hydroxymethylase activity, TETs can modulate transcription by adjusting levels of DNA methylation at promoters. Accordingly, both TET1 and 5mC often localize to transcriptional start sites (16, 17). With regard to nuclear receptors, it was reported previously that peroxisome proliferator-activated receptor-γ has the ability to direct local demethylation around its binding sites via recruitment of TET1 through peroxisome proliferator-activated receptor-γ-induced PARylation (18). In
addition, TET3 up-regulation was shown to be responsible for glucocorticoid receptor-induced DNA hypomethylation in neural stem cells (19). TET proteins have also been reported to regulate transcription via interacting proteins such as mSin3A (16), MBDS/NuRD complex (20), polycomb repressive complex PCRC2 (21), and the O-linked N-acetylglucosamine transferase (22). However, to our knowledge, TET protein has not been described to specifically stabilize a chromatin-associated protein, and in so doing enhance its transcriptional functional. As the stability and chromatin association of wild-type and TR mutants can be differentially affected, depending on the presence or absence of their TET3 interaction (Fig. 6), we also provide proof of principle that TET3 may potentially modulate the clinical outcome in patients resistant to T3, as a result of TR mutation.

In sum, in this study we uncover a TET3 catalytic activity-independent mechanism for enhancing TR function. The mechanism involved (i.e., stabilization of TR on chromatin) is also very different from the one classically described for nuclear receptor coactivators. By interacting with and stabilizing TR binding to chromatin, TET3 protects it from ubiquitination and proteasome degradation and favors the activation of gene expression in the presence of T3. The presence of TET3 would thus increase the cellular sensitivity to T3 stimulation. This role of TET3 may not be limited to TR. TET3 may regulate the hormone sensitivity of the cell to a host of different nuclear receptors, as the AF2 domain involved in the interaction is well conserved in this family of transcription factors and TET3 has been observed to interact with and promote the stabilization of AR and ERRα in chromatin.

Methods

Plasmids, Antibodies, and Drugs. Plasmids encoding TET1, TET2, TET3 (23), and TRα1/TRβ1 (9) were previously described. TET3/TRα1 mutants were generated by PCR and are described as antibodies and drugs used in SI Methods.

Immunoprecipitation. Immunoprecipitations were carried out as described (23). Magnetic M2 (Sigma), magnetic M280 (Dynabeads M-280, Invitrogen; used to retain the G5 tag), or Streptavidin beads (Agilent Technologies) were used when indicated.

RNA Interference and CRISPR/Cas9 in C17.2 Cell Lines. Knocking down and knocking out TET3 in C17.2 lines stably expressing TRα1 were respectively obtained by siRNA and CRISPR/Cas9 technology. Detailed information is provided in SI Methods.

RNA Extraction, qPCR Measurements, and ChAP. Protocols were described before (9). The sequences of the primers used are provided in Table S1.

Cell Fractionation. Nuclear-cytoplasmic fractionation was performed using the NE-PER Nuclear and Cytoplasmic Extraction Reagents kit (Thermo Fisher Scientific) according to the manufacturer’s protocol.

Cell Culture and Transient Transfection Assays. C17.2 cells, human HEK293T, and HeLa cells were cultured in recommended medium. Transf–LT1 (Mirus) was used for transfection according to the manufacturer’s instructions. Luciferase assay was carried out as described (24).

ACKNOWLEDGMENTS. We thank Q. Zhang for construction of full-length TET expression vectors; S. Richard, P. Godement, B. Py, and W. Bourguet for their technical help and advice; and C. Couturier and S. Dussury from Structure Fédérative de Recherche Biosciences (UMS344/CNRS, USB/Inserm, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon) for FACS. The work is supported by the Ministry of Science and Technology of China (Grant 1015CB910402 to J.W.), the National Natural Science Foundation of China (Grants 81330078 and 31571325 to J.W.), the Science and Technology Commission of Shanghai Municipality (Grants 14XD1401700 and 11DZ2260300 to J.W.), the French Agence Nationale de la Recherche (Thyromut2; Grant ANR-15-CE14-0011-01 to F.F.), and region Rhône-Auvergne (Mobilité Internationale Rhône-Alpes to K.C.G.).

Guan et al.