Amorphous MoS$_3$ as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries

Hualin Yea,1, Lu Maa,1, Yu Zhoub, Lu Wangb, Na Hanb, Feipeng Zhaoa, Jun Denga, Tianpin Wua, Yanguang Lia,2, and Jun Lua,2

aInstitute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China; and bChemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439

Edited by Richard Eisenberg, University of Rochester, Rochester, New York, and approved October 31, 2017 (received for review July 3, 2017)

Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS$_3$ as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS$_3$ exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS$_3$ can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS$_3$. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

Li–S battery | Na–S battery | amorphous MoS$_3$ | carbonate

There has been an increasing demand for the development of advanced battery technologies with high energy/power density, long cycle life, and low cost (1, 2). Among all promising solutions, lithium–sulfur (Li–S) batteries have attracted particular attention by virtue of the large theoretical capacity (1,675 mAh/g) of sulfur, its low cost (<$150/ton), and earth abundance (3–8). However, Li–S batteries have not reached their expected potential. Firstly, sulfur cathodes are not compatible with carbonate-based electrolytes commonly used in lithium-ion batteries. Their polysulfide intermediates readily react with carbones via a nucleophilic addition or substitution reaction, leading to a sudden capacity fading (7–10). While ether-based electrolytes, such as the combination of 1,3-dioxolane/1,2-dimethoxyethane, DOL/DME) have no such problem, they are more volatile and restrict the actual working temperature of batteries below 50 °C (9, 11). Secondly, polysulfides have considerable solubility in ether-based electrolytes and are prone to escape from the cathode during discharge. These species not only markedly reduce the active material utilization and the Coulombic efficiency, but also corrode the lithium metal when diffusing to the anode (6–8). Having analogous electrochemistry to Li–S batteries, room-temperature sodium–sulfur (Na–S) batteries have also been proposed but are even more problematic (12–15). They suffer from a serious cycling problem. At present, there are very few reports about cyclable Na–S batteries (12).

To tackle these issues, different strategies have been developed under one similar guiding principle: to keep polysulfides at the cathode and to diminish their dissolution in the electrolyte (6–8). Most recent studies use various functional electrode components to trap polysulfides, including but not limited to carbonaceous materials (porous carbon, graphene oxide, carbon nanotube, etc.) (16–19), metal oxides (TiO$_2$, Al$_2$O$_3$, V$_2$O$_5$, MoO$_3$, MnO$_2$, etc.) (20–24), disulfides (TiS$_2$, ZrS$_2$, VS$_2$, etc.) (23, 25, 26), hydroxides [Ni(OH)$_2$, etc.] (27, 28), and polymers (polyaniline, polypyrrole, polycrylicylitrile, and so on) (29, 30). Considerable research efforts have also been invested in the proper design and functionalization of battery separators to suppress the shuttling of polysulfides between the cathode and anode (31–33). Nevertheless, few of these practices are proven fully effective. The auxiliary blocking materials introduced are usually electrochemically inert. They not only dilute the content of electrochemically active sulfur in the working cathode (sometimes <40 wt %), but often create extensive voids that seriously limit battery areal and volumetric capacities below practical values (5, 34). To make it even worse are the complexity and fabrication cost added by these practices, which essentially go against the original motivation for using sulfur cathodes.

Alternatively, the possibility of using organic sulfides (such as tetrathylthiuram disulfide and 2,5-dimercapto-1,3,4-thiadiazole) has also been pursued for decades (35–38). In these compounds, sulfur is covalently bonded to the carbon chain, and does not detach from the electrode material even at full discharge (35, 36). Nevertheless, they are generally not considered for practical applications due to their high solubility in organic electrolytes, inferior electronic conductivity, and low sulfur content (5, 7, 9, 34).

Here, we reason that analogous to organic sulfides, sulfur-containing inorganic compounds (such as transition metal sulfides and polysulfides) may hold unexpected promise as the “sulfur-equivalent” cathode materials. By sulfur-equivalent we expect that these materials do not contain elemental sulfur but exhibit sulfur-like electrochemical behaviors. Our interest in them lies in the possibility that their reaction pathways may not involve the formation of soluble polysulfide intermediates. This may circumvent all

Significance

We propose a concept of “sulfur-equivalent cathode materials,” and reason that instead of using problematic elemental sulfur, one can use sulfur-containing compounds as the alternatives with a comparable electrochemical property but free of any polysulfide generation. We demonstrate here the great potential of amorphous MoS$_3$ as such a sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. More remarkably, we find that MoS$_3$ is fully cyclable in the carbonate electrolyte (which is known to kill conventional sulfur cathodes) under a relatively high temperature of 55 °C. MoS$_3$ can also be used as the cathode material of even more challenging Na–S batteries to enable an impressive performance.

Author contributions: Y.L. and J.L. designed research; H.Y., L.M., Y.Z., L.W., and N.H. performed research; F.Z., J.D., and T.W. contributed new reagents/analytic tools; and H.Y. and J.L. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

1H.Y. and L.M. contributed equally to this work.

2To whom correspondence may be addressed. Email: yanguang@suda.edu.cn or junlu@anl.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711917114/-/DCSupplemental.
of the long-standing issues of conventional Li–S and Na–S batteries, and ultimately lead to excellent battery cycle life necessary for the commercialization of sulfur batteries. However, not all sulfur-containing inorganic compounds can be considered as sulfur-equivalent. There are two important criteria as outlined below. They should have a high working voltage akin to sulfur (∼2 V for Li–S). They should also contain a high sulfur content (>40 wt %) to rival conventional sulfur cathodes.

Results and Discussion

MoS$_2$ was taken as the starting point to test our proposal because it is one of the most popular transition-metal sulfides for energy conversion and storage (39, 40). MoS$_2$ consists of covalently bonded monolayers brought together by weak van der Waals interactions—a structure analogous to graphite (Fig. 1A, Inset). It has been traditionally considered as the anode material of lithium-ion or sodium-ion batteries (39, 41, 42). Here, we assessed its performance as the sulfur-equivalent cathode material for Li–S batteries, and applied a lower cutoff voltage of 1.2 V versus Li$^+$/Li. No appreciable capacity was measured when MoS$_2$ was directly cycled between 1.2 and 3.0 V versus Li$^+$/Li (Fig. 1A). This was not surprising since the intercalation of Li$^+$ ions into MoS$_2$ interlayers was known to take place at ∼1.1 V (42, 43). Interestingly, we found that if MoS$_2$ was initially discharged down to 0.01 V (a process defined as “activation”), it then featured a discharge plateau around 1.9 V at all subsequent cycles (Fig. 1B). Such an observation was consistent with previous results and indicative of a permanent structure change during the first discharge even though its exact cause remained a topic of constant debate (40, 43–46). The specific capacity between 1.2 and 3.0 V at the second cycle reached 277 mAh/g when normalized to the total mass of MoS$_2$. Even though its discharge voltage was close to that of elemental sulfur, we believed that the specific capacity measured here was insufficient to render MoS$_2$ appealing as the sulfur-equivalent cathode material for Li–S batteries.

We next explored the potential of the cousin material of MoS$_2$—amorphous MoS$_3$, MoS$_3$ was proposed to have a chain-like structure consisting of Mo ions bridged by sulfide and disulfide ligands as schematically illustrated by the Fig. 2A, Inset (47, 48). Its electrochemical lithiation and delithiation was first studied about four decades ago (49–51). Compared with crystalline layered MoS$_2$, amorphous chain-like MoS$_3$ has several structural advantages: it has higher sulfur content; its one-dimensional chain can facilitate the fast diffusion of Li$^+$ ions and has more open sites toward their active storage (52).

The preparation of MoS$_3$ followed the acid precipitation method using (NH$_4$)$_2$MoS$_3$ as the precursor in the presence of a small amount of multiwall carbon nanotubes (CNTs) as the conductive additive (see Materials and Methods for more details). We valued this synthetic method for its simplicity, reproducibility, and amenability to mass production. The X-ray diffraction (XRD) pattern of the final product was largely featureless except for a broad peak centered at ∼14°, in good agreement with amorphous MoS$_3$ (53) (Fig. 2A). Its Raman spectrum had vibration bands of MoS$_3$ between 200 and 400 cm$^{-1}$ as well as D and G bands from CNTs (54) (Fig. 2B). S 2p X-ray photoelectron spectroscopy (XPS) spectrum displayed a broad envelope of two pairs of doublet assignable to terminal or bridging (disulfide ligands)—features characteristic of MoS$_3$ (55) (Fig. 2C). Moreover, the final product was examined under transmission electron microscopy (TEM). Fig. 2D is a representative low-magnification TEM image showing that the product had fiber-like morphology. It resulted from the deposition of MoS$_3$ on the CNT template. Close examination revealed that the MoS$_3$ coating was granular with an average size of ∼20 nm. It had no obvious ordered lattice fringe, corroborating its amorphous nature (Fig. 2E).

Brunauer–Emmett–Teller (BET) analysis suggested that MoS$_3$ had a low surface area (16.3 m2/mg) and porosity (0.09 cm3/g) (Fig. S1). From thermogravimetric analysis (TGA) in air, we concluded that the final product contained 11 wt % CNTs and ∼45 wt % S (Fig. 2F). It was worth noting that the sulfur content measured here was no lower than many conventional sulfur composite materials containing 40 wt % S (or even lower) that were designed to trap polysulfides (19, 56–60).

In the galvanostatic charge/discharge experiments. The discharge curve of MoS$_2$ displayed a voltage plateau between 1.8 and 2.0 V, followed by a sloping tail down to the cutoff voltage of 1.2 V (Fig. 3B). The specific capacity delivered during the first cycle was 667 mAh/g when normalized to the total mass of MoS$_2$, and ∼1,482 mAh/g when normalized to the sulfur weight. More strikingly, amorphous MoS$_3$ exhibited an electrochemical behavior distinct from crystalline MoS$_2$ at the first cycle. It did not require an activation process to present the sulfur-like plateau around 1.9 V. In fact, the change in MoS$_3$ discharge curves before and after the first cycle was quite subtle (Fig. 3B). This comparison clearly underlined that the structural difference between two materials greatly impacted their initial lithiation pathway, and that amorphous MoS$_3$ likely preserved its chain-like structure during repeated cycling, which would be shown to be indeed so later by our operando synchrotron study.

The biggest challenge plaguing the development of Li–S batteries is their poor cycling stability due to the dissolution of polysulfide intermediates (8, 10). It was thereby one of the main pursuits in our study to evaluate the cycling stability of MoS$_3$. This sulfur-equivalent cathode material was galvanostatically charged and discharged at a specific current of 0.45 A/g. It exhibited a high initial specific capacity of 585 mAh/g, which gradually decreased over the first 200 cycles, then leveled off and stabilized (Fig. 3C). At the end of 1,000 cycles, it still retained a specific capacity of ∼383 mAh/g. The Coulombic efficiency was in the range between 99.8–100.2% since the second cycles. Even though the reported specific capacity here appeared to be lower than most sulfur composites because it was normalized to the total mass of MoS$_3$, we argued that if the electrochemically inert components in the latter (for trapping polysulfides) was also counted (in fact they have to be counted), the practical specific
capacity of conventional sulfur composites would be lowered
to a similar level (400–600 mAh/g) (17–21, 56, 57, 61). Remarkably, our sulfur-equivalent cathode material exhibited
an impressive long-term cycling stability. The coin cell after 100
cycles was disassembled, and the used electrolyte was collected
and analyzed by UV-visible (UV-vis) spectroscopy. It was free of
dissolved polysulfide as commonly observed in cycled Li–S bat-
teries (59, 62–64) (Fig. S2). This result evidenced that the re-
action between MoS$_3$ and Li$^+$ might not involve the formation of soluble polysulfide intermediates.

Fig. 3. Electrochemical performances of MoS$_3$ as the sulfur-equivalent material for Li–S batteries. (A) CV curves at the scan rate of 0.1 mV/s. (B) Galvanostatic charge and discharge curves at 23 mA/g; specific capacity was normalized to the total mass of MoS$_3$ (bottom x axis) or the mass of S in MoS$_3$ (top x axis). (C) Cycling stability and corresponding Coulombic efficiency at 0.45 A/g. (D) Rate capability from 0.09 to 9 A/g. (E) Cycling stability of a high-loading electrode (6.9 mg/cm2) at 0.1 mA/cm2 for the first few cycles and 0.5 mA/cm2 subsequently. (F) Cycling stability and corresponding Coulombic efficiency at 0.45 A/g in the carbonate electrolyte at 55 °C.
Rate capability is the second issue of Li–S batteries due to the insulating nature of elemental sulfur and its full-discharge products (3, 6). Most existing sulfur materials could not achieve appreciable capacities once the current rate went beyond 5 C (18–21, 56, 57, 61). By contrast, our MoS₂ demonstrated decent performance even under very large current rates. When the specific current was ramped from 0.09 A/g to 0.45, 0.45, and 9 A/g, its reversible specific capacities gradually lowered from 585 mAh/g to 495, 432, 275, and 189 mAh/g, respectively (Fig. 3D). The highest rate of 9 A/g corresponded to a remarkable C rate of ~12 C, at which charge or discharge was completed within 5 min. Such a high-rate performance was indicative of the rapid reaction kinetics of MoS₂ with Li⁺ ions.

Another major concern with Li–S batteries is their deteriorated performance with increasing sulfur loading, and hence very limited areal capacity in general (10, 34). This is because at high sulfur loadings, the dissolution of polysulfide intermediates accelerates. To trap them would require the assistance of more blocking materials, resulting in thick electrode films that are prone to fracture and delaminate from the current collector (5, 6). We demonstrated here that MoS₂ as the sulfur-equivalent cathode material functioned well under high loading. For example, even with 6.9 mg/cm² of MoS₂, the electrode delivered high specific capacity of ~405 mAh/g at 0.1 mA/cm² and ~374 mAh/g at 0.5 mA/cm² (Fig. 3E). They corresponded to large areal capacities of ~2.8 and ~2.6 mA/cm², respectively. In addition, the electrode exhibited great cycling stability at 0.5 mA/cm² with ~78% capacity retention at the end of 200 cycles. The high-loading performance observed here was believed to benefit from the polysulfide-free reaction pathway of MoS₂ and its relatively compact microstructure (low surface area and porosity).

At last, we demonstrated that MoS₂ was cyclable even in carbonate-based electrolyte. Very few sulfur-based materials were able to achieve this because of the rapid reaction between carbonates and polysulfides (9). Here, we switched the electrolyte from 1 M LiTFSI in DOL/DME to 1 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DEC). The CV and galvanostatic charge/discharge curves of MoS₂ in the carbonate electrolyte were very similar to those in the ether electrolyte (Fig. S3 A and B). At 0.45 A/g, it showed very decent cycling stability with ~300 mAh/g retained at the end of 1,000 cycles (Fig. S3C). Even though such a result is still inferior to the performance in the ether electrolyte, it contrasted conventional Li–S batteries that were completely noncycable in the carbonate electrolyte, and again evidenced that the reaction between MoS₂ and Li⁺ might not involve polysulfide intermediates. The use of carbonate electrolyte was more desirable than ether electrolyte for its lower cost and higher thermal stability (30, 65). For practical applications, it is required that Li–S batteries should be able to work at >55 °C—a temperature that batteries may reach under direct sun exposure in tropical regions (65, 66). Here we showed that MoS₂ in the carbonate electrolyte could cycle well at 55 °C with a measured capacity over 460 mAh/g at the end of 100 cycles (Fig. 3F).

From the above assessments, we showed that amorphous MoS₂ as the sulfur-equivalent cathode material provided a possible solution to several long-standing issues of conventional Li–S batteries. It had an electrochemical behavior similar to sulfur but probably did not involve polysulfide intermediates. It was also distinct from transition-metal disulfides (such as those of Mn, Fe, Co, Ni, and many others), which were suggested to lithiate via the conversion reaction mechanism. To gain an insight on the possible lithiation and delithiation mechanism of MoS₂, operando X-ray absorption spectroscopy (XAS) was carried out to track the evolution of the oxidation state and coordination environment of Mo and S species during the battery cycling. Fig. 4A showed the Mo K-edge X-ray absorption near-edge structure (XANES) spectrum of MoS₂. Its edge position gradually shifted toward lower energy during discharge, suggesting Mo was progressively reduced. The Mo–S bond distance was also monitored via the Fourier transform of the extended X-ray absorption fine-structure (EXAFS) spectrum. It slightly contracted during discharge and then recovered to the original length upon recharge (Fig. 4B). S K-edge XANES spectrum of MoS₂ evidenced that sulfur was also reduced during discharge (Fig. 4C), but it did not result in the formation of Li₂S or polysulfides (Fig. S4). Based on the above operando XAS results, we concluded that the amorphous chain-like structure of MoS₂ was largely preserved during lithiation and delithiation, and that the electrochemical reaction did not involve the formation of any polysulfide.

We noted that previously Doan-Nguyen et al. (67) employed operando pair-distribution function techniques to track the structural evolution of MoS₂ during lithiation and delithiation, and similarly concluded that the Mo–S bond remained relatively constant upon cycling; Matsuyama et al. (68) also found that both Mo and S in MoS₂ were both redox-active using ex-situ XANES. Our density-functional theory calculations indicated that at discharge the most energetically favorable adsorption site of Li⁺ ions was the bridge site between two adjacent sulfur atoms (Fig. 4D). With such a configuration, net electron transfer from Li to S and Mo took place.

Encouraged by its outstanding performance for Li–S batteries, we further pursued the possibility of using MoS₂ as the sulfur-equivalent cathode material for room-temperature Na–S batteries. Na–S batteries operate based on the similar electrochemistry as Li–S but are even more challenging. So far, there have been only a handful of reports about room-temperature Na–S batteries, the majority of which have poor cycle life (15, 50, 59, 62, 69). In our experiments, coin-cell-type Na–S batteries were assembled by pairing MoS₂ with a metallic Na disk, filled with 1 M NaClO₄ in EC/DEC with 8 vol % fluoroethylene carbonate (FEC) as the electrolyte. Fig. 5A shows the galvanostatic charge and discharge curve between 1.0 and 2.8 V. It exhibited a gradual slope between 1.3 and 2.0 V and then a short tail down to 1.0 V. The overall voltage profile resembled those of conventional Na–S batteries (14, 59). Similarly, only subtle modification of the discharge curve before and after the first cycle was noted. The specific capacity of MoS₂ was 460 mAh/g based on the total mass of MoS₃.
at the first discharge, and 428 mAh/g at subsequent cycles. These values were considerably larger than those of many previous sulfur composite electrodes when their capacities were all normalized to the total composite mass (12–15, 50, 58–60, 69).

MoS$_2$ demonstrated impressive long-term cycling stability as the sulfur-equivalent cathode material for Na–S batteries. When cycled at 0.45 A/g, its specific capacity slowly decreased but still retained a considerable value of ~180 mAh/g at the end of 1,000 cycles, and its Coulombic efficiency maintained ~100% (Fig. 5B). By stark contrast, we noted that the reported cycle life of most previous room-temperature Na–S batteries seldom went beyond 200 cycles (12–15, 50, 69). The remarkable long-term cycling stability of our electrode material observed here would be impossible if it was not for the unique structure and electrochemical property of MoS$_2$. Next, our rate capability assessment evidenced that MoS$_2$ was also able to uptake Na$^+$ ions at fast rates. When the specific current was ramped to 4.5 and 9 A/g, the electrode material still sustained significant specific capacities of ~198 and ~135 mAh/g, respectively (Fig. 5C). Furthermore, we found that increasing the loading of active electrode material did not notably compromise its electrochemical performance. Fig. 5D presented the cycling data of MoS$_2$ with an areal loading of 7.1 mg/cm2 at 0.5 mA/cm2. Its specific capacity started at ~248 mAh/g (corresponding to an areal capacity of 1.76 mAh/cm2), and had the retention of ~76% at the end of 200 cycles. This favorable high-loading performance of MoS$_2$ brought it one step closer to practical applications.

Operando XAS experiments were likewise carried out to study the structural evolution of this sulfur-equivalent cathode material during sodiation and desodiation. Mo K-edge XANES spectrum showed that the shift of its edge position was very slight at discharge (Fig. 5E), whereas S K-edge XANES spectrum indicated that the reduction of sulfur was more substantial (Fig. 5F), probably due to stronger interaction between Na and S. Fourier-transformed EXAFS of MoS$_2$ (Fig. 5F) revealed that the Mo–S bond was also preserved during repeated sodiation and desodiation without the formation of metallic Mo, Na$_2$S, or polysulfide (Fig. S5).

Conclusions

In summary, we demonstrated amorphous chain-like MoS$_2$ as a sulfur-equivalent cathode material for room-temperature sulfur batteries. It was facilely prepared via the acid precipitation method in aqueous solution. In Li–S batteries, MoS$_2$ exhibited a discharge plateau ~1.9 V versus Li$^+$/Li (close to sulfur), large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. In addition, what clearly distinguished MoS$_2$ from all previous sulfur-based cathodes was that our material was fully compatible with the carbonate electrolyte with very decent cycling stability, even under a relatively high temperature of 55 °C. Operando XAS experiments provided solid evidence that the repetitive lithiation and delithiation of MoS$_2$ did not cause significant Mo–S bond breaking or Mo–Mo bond formation. There was no LiS or polysulfide detected as the reaction intermediate or final product. At last, MoS$_2$ was also used as the cathode material of Na–S batteries to enable decent capacity and good cycle life. During our investigation, we also explored some other transition-metal polysulfides (such as TiS$_2$, TiS$_3$, and NbS$_2$). They all had much lower working voltage (<1.5 V vs. Li$^+$/Li) and poorer cycling stability, and therefore were disqualified as the sulfur-equivalent cathode materials. This again highlighted the uniqueness of amorphous MoS$_2$.

Materials and Methods

Material synthesis, electrode preparation, material characterizations, electrochemical measurements, and operando X-ray absorption characterization are detailed in SI Materials and Methods.

ACKNOWLEDGMENTS. We acknowledge support from the Ministry of Science and Technology of China (2017YFA0204800), the National Natural Science Foundation of China (51472173 and 51522208), the Natural Science Foundation of Jiangsu Province (BK20140302 and SBK2015S01320), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Collaborative Innovation Center of Suzhou Nano Science and Technology. L.M., T.W., and J.L. acknowledge the financial support from the US Department of Energy under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy.

